Samhällsekonomiska effekter av svenska investeringar i ESS 2010-2020
Samhällsekonomiska effekter av svenska investeringar i ESS 2010–2020

VR2203
Dnr 3.2-2022-05087

Swedish Research Council
Vetenskapsrådet
Box 1035
SE-101 38 Stockholm, Sweden
Innehållsförteckning

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Innehållsförteckning</th>
<th>Sidnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Förord</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Sammanfattning</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Summary</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Inledning</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>ESS, finansiering och svenska insatser</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Samhällsekonomiska effekter av forskningsanläggningar</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Ökad efterfrågan och sysselsättning på grund av industrins leveranser till anläggningen</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Teknikutveckling och innovationer som görs av forskarna på anläggningen</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Teknikutveckling och innovationer bland leverantörerna</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>Ökad efterfrågan och sysselsättning på grund av anläggningens löneutbetalningar</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Utveckling av humankapital</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Samhällsekonomiska effekter av grundforskning</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Kommersiell användning av anläggningen</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>Sammanfattning av kunskapsläget</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Leveranser till ESS 2018–2020</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Fördelning mellan länder</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Geografisk fördelning av svenska leveranser</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Branschfördelning av leveranserna</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Svenska leverantörer</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Slutsatser</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Effekter för Skanska och de stora konsulthusen</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Effekter för mindre och medelstora leverantörer</td>
<td>43</td>
</tr>
<tr>
<td>6.1</td>
<td>Urval</td>
<td>43</td>
</tr>
<tr>
<td>6.2</td>
<td>Resultat</td>
<td>46</td>
</tr>
<tr>
<td>6.3</td>
<td>Slutsatser</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>Sammanfattning: samhällsekonomiska effekter under ESS konstruktionssfas</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>Hur väl förberedda är svenska universitet och forskningsinstitut?</td>
<td>54</td>
</tr>
<tr>
<td>8.1</td>
<td>Det svenska forskarsamfundets intresse i ESS</td>
<td>55</td>
</tr>
<tr>
<td>8.2</td>
<td>Lunds universitet</td>
<td>56</td>
</tr>
<tr>
<td>8.3</td>
<td>Uppsala universitet</td>
<td>57</td>
</tr>
<tr>
<td>8.4</td>
<td>Övriga svenska universitet</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>Ekosystemet mellan universitet och näringsliv</td>
<td>62</td>
</tr>
<tr>
<td>9.1</td>
<td>Aktörer och mediatorer</td>
<td>62</td>
</tr>
<tr>
<td>9.2</td>
<td>Nationell tekniparksfunktion</td>
<td>65</td>
</tr>
<tr>
<td>9.3</td>
<td>Diskussion och rekommendationer</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>Sammanfattning och slutsatser</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>Referenser</td>
<td>73</td>
</tr>
</tbody>
</table>
Bilaga 1: Intervjuer ... 78
Förord

Sverige har investerat stort i European Spallation Source ERIC (ESS) sedan beslut togs i maj 2009 att den internationella anläggningen skulle byggas i Lund. Att följa vilka effekter dessa investeringar får, inte bara för forskningen utan även för samhället i övrigt, är av största vikt för att förstå hur vi bäst kan dra nytta av det svenska värdskapet för ESS.

Rapporten ger en utmärkt översikt samt en rad användbara rekommendationer om hur svenska aktörer kan agera framöver för att optimera effekterna av de investeringar som har gjorts och som kommer att göras i ESS. Å RFI:s och Vetenskapsrådets vägnar vill jag tacka utredarna för ett mycket gedigt arbete.

Stockholm, april 2022

Lisbeth Olsson
Huvudsekreterare, Rådet för forskningens infrastrukturer (RFI), Vetenskapsrådet
Sammanfattning

Denna rapport redovisar resultaten av en studie av de samhällsekonomiska konsekvenserna av de investeringar som genomförts under uppbryggngadfasen av European Spallation Source (ESS) i Lund 2010–2020. Den har utförts på uppdrag av Vetenskapsrådet och avser att uppskatta effekterna av investeringarna i ett nationellt perspektiv.

Svenska företag har varit framgångsrika när det gäller att konkurrera om de uppköp som gjorts av ESS. Från oktober 2015 då verksamheten organiserades som European Research Infrastructure Consortium (ERIC) till slutet av 2020 har svenska företag erhållit order till ett värde av drygt 8,5 miljarder kronor (exklusive moms), vilket är betydligt mer än Sveriges kontantbidrag under denna tid. Rapporten diskuterar effekterna av dessa leveranser för företag och näringsliv. Den skiljer mellan Skanska och de stora konsulthuset, som under uppbryggngadfasen värderas stått för den helt dominerande delen av dessa leveranser, och övriga leverantörer, som i stor utsträckning är små och medelstora företag. Effekterna av leveranserna är av två slag: (1) spillovereffekter och (2) multiplikatoreffekter. De förra avser innovationsfordon och förstärkt konkurrenskraft. De senare betecknar de effekter på inkomster och sysselsättning som anläggningens efterfrågan genererar.

Bygget av ESS har ställt höga krav på Skanska och de ingenjörskonsulter som engagerades. De tekniska utmaningarna har till stor del kunnat hanteras med befintliga metoder, men viss nyutveckling och förstärkning av rutiner och organisatoriska resurser har ägt rum inom tre områden: (1) samverkansformer med partnervärdep, (2) planering och riskhantering, samt (3) dokumentation och informationsbehandling. Dessa erfarenheter tycks dock endast i begränsad omfattning ha påverkat företagens långsiktiga konkurrenskraft. De mest påtagliga effekterna av de omfattande investeringarna i den fysiska infrastrukturen har istället varit de multiplikatoreffekter på inkomster och sysselsättning som skapats lokalt, i övriga Sverige och i resten av EU.

En enkät riktad till ESS övriga leverantörer ger en liknande bild. En stor del av leveranserna till anläggningen har avsett standardprodukter, där beställningarna genererar inkomster men inga tydliga spillovereffekter i form av teknisk nyutveckling och förstärkt konkurrenskraft. Endast en relativt liten andel av företagen rapporterar effekter som direkt påverkat deras konkurrenskraft. Detta avspeglar det faktum att Sverige förbundit sig att före 2021 endast ge kontantbidrag till ESS och därmed avstå från att konkurrera om utlysta in-kind uppdrag.

Den viktigaste samhällsekonomiska effekten under uppbryggngadfasen är därför de inkomster och arbetsställfälten som de finansiella strömmarna från ESS framkallat. Under perioden 2010–2020 uppskattas investeringarna i ESS ha
skapat runt 37 000 årsarbetstillfällen i hela EU, varav omkring 16 000, dvs. mellan en tredjedel och närmare hälften, i Sverige.

Av större framtida betydelse är de effekter ESS haft på det svenska forskarsamfundet. Svenska universitet och forskningsinstitut har under de senaste tio åren förstärkt existerande och byggt ny kompetens inom neutronforskning och spallationsteknologi. Denna kompetens är en förutsättning för att kunna utnyttja de möjligheter ESS kommer att erbjuda (i hård internationell konkurrens), för utveckling av nya instrument och mätmetoder och för forskningsändamål.

Studiens övergripande slutsats är att satsningarna på ESS under uppbrygnadsperioden genererat positiva samhällsekonominiska effekter för Sverige. De stora vinsterna kan emellertid inte förväntas förrän efter det att anläggningen tagits i full drift, vilket planeras ske i början av 2028. För att realisera dessa potentiella vinstar krävs dock att Sverige förmår skapa ett fungerande ekosystem som omfattar företag, universitet och forskningsinstitutioner, finansieringsorgan, relevanta myndigheter, och andra aktörer som gemensamt bidrar till att Sverige blir ett ledande land inom forskning och industriell tillämpning av spallationssteknologi. Rapporten diskuterar avslutningsvis de organisatoriska och institutionella utmaningar som detta medför.

Köpenhamn, mars 2022

Lars Håkansson, Professor, Department of International Economics, Government and Business, Copenhagen Business School

Ari Kokko, Professor, Department of International Economics, Government and Business, Copenhagen Business School
Summary

This report presents the results of a study of the socio-economic effects of the investments made during the construction phase of the European Spallation Source (ESS) in Lund 2010–2020. It was undertaken on behalf of the Swedish Research Council for the purpose of evaluating the effects of the investments in a national perspective.

Swedish firms have been successful in competing for the purchases made by ESS. From October 2015, when ESS was organised as a European Research Infrastructure Consortium (ERIC) until the end of 2020, Swedish firms had obtained orders valued at approximately SEK 8.5 billion (excluding VAT), which is considerably more than Sweden’s cumulative cash contributions during the period. The report discusses the effects of these deliveries for the Swedish suppliers and the national economy.

It makes a distinction between Skanska and the large engineering consulting firms, which accounted for the bulk of deliveries during the period, and other suppliers, most of which were small and medium-sized companies. Two kinds of effects are discussed: (1) spill-over effects and (2) multiplier effects. The former refer to effects on productivity, innovativeness and competitive capabilities, while the latter focus on the incomes and employment created by the flow of funds from ESS. The construction of ESS entailed demanding challenges for Skanska and the engineering consultants engaged in the design of the facility.

These could largely be handled using existing methods and technologies, but further development and strengthening of routines and organisational capabilities took place within three areas: (1) forms of collaboration with partner companies and the buying organisation within ESS, (2) planning and risk management, and (3) documentation and information-handling routines. However, the resulting improvements appear to have only marginally affected long-term competitive capabilities of the companies involved. The most important effects of the large investments in the physical infrastructure have been the multiplier effects on incomes and employment locally, in other parts of Sweden and in the rest of the EU.

A questionnaire directed to ESS’s other suppliers provided a similar picture. A large percentage of the supplies related to standard products and services, generating incomes but no evident spill-over effects in terms of technical development and increased competitiveness. Only a small percentage of the suppliers report such effects. This reflects the fact that Sweden had committed to refrain from competing for in-kind deliveries of advanced instruments and equipment until 2021, using only cash contributions to finance the Swedish share of the ESS budget.
The most important socio-economic effects during the construction phase are therefore the incomes and employment opportunities generated by the financial flows from ESS. During the period 2010–2020, the investments in ESS are estimated to have created around 37 000 annual jobs in the EU, of which around 16 000 were in Sweden.

Of greater future significance are ESS’s effects on the Swedish research community. During the last ten years, Swedish universities and research institutes have strengthened existing capabilities and created new ones in the areas of neutron research and spallation technology. These competences will be necessary to exploit the opportunities ESS will offer (in tough international competition) for the development of new instruments and measuring techniques, and for research purposes.

The overall conclusion of the study is that the engagement in ESS has generated positive socio-economic effects for Sweden already during the construction phase. However, the most significant gains cannot be expected until the facility comes into operation, which is expected to take place in 2028. In order to realise these potential gains, Sweden must create a well-functioning ecosystem encompassing companies, universities and research institutes, funding bodies, relevant public authorities and other actors, among whom cooperation is necessary to ensure a leading role for Sweden in research and industrial applications of spallation technology. The report concludes with a discussion of the organisational and institutional challenges linked to the development of such an ecosystem.

Copenhagen, March 2022

Lars Håkansson, Professor, Department of International Economics, Government and Business, Copenhagen Business School

Ari Kokko, Professor, Department of International Economics, Government and Business, Copenhagen Business School
1 Inledning

Sverige har åtagit sig att investera minst 10 miljarder kronor i forskningsanläggningen European Spallation Source (ESS) i Lund fram till 2025. När anläggningen tas i drift kommer den att vara världens mest kraftfulla neutronkälla och en globalt viktig resurs för avancerad materialforskning. Denna rapport sammanfattar resultaten av en utvärdering av de hittillsvarande samhällsekonomiska effekterna av Sveriges investeringar i ESS.

Rapporten omfattar nio avsnitt utöver denna korta introduktion. Avsnitt 2 rör finansieringen av ESS och sammanfattar de svenska investeringarna i projektet. En huvudpoäng här är att de flesta andra medlemsländerna i ESS valt att leverera en stor del av sina insatser in-kind, medan Sverige har tillfört kontanta medel för ESS köp av varor och tjänster. Avsnitt 3 beskriver kortfattat de möjliga samhällsekonomiska effekterna av stora forskningsanläggningar och sammanfattar resultaten från tidigare analyser och utvärderingar inom området. En slutsats från tidigare studier är att de potentiella effekterna på leverantörens konkurrenskraft är högst betydande, och att verksamheten vid anläggningarna bidrar till viktig kunskapsutveckling.

Analysen av ESS hittillsvarande samhällsekonomiska effekter tar sin utgångspunkt i den tidigare forskningen, anpassat till att denna fokus avser uppbrygnadsfasen av en stor forskningsinfrastruktur, medan tidigare studier i regel behandlat effekter då anläggningar varit i full drift.

Figur 1 ger en överblick av de viktigaste faktorerna under uppbrygnadsfasen och vilka av dessa som studeras närmare i denna rapport. Det empiriska underlaget består av skriftlig dokumentation och intervjuer med berörda organisationer, myndigheter, universitet och företag, kompletterat med en enkätundersökning riktad till små och medelstora leverantörer.

1 En förteckning av genomförda intervjuer återfinns i Bilaga 1.
ESS är den största forskningsinvestering som Sverige någonsin genomfört. Anläggningen producerar neutroner genom spallation, en process varigenom en tungmetall avger neutroner efter att ha bombarderats med protoner. Dessa neutroner kan användas av forskare för att se och förstå uppbyggnaden och egenskaperna hos olika material, dvs. hur atomerna och molekylerna är fördelade och hur de bantar sig under olika förhållanden. Tekniken har breda tillämpningar inom många vetenskapliga områden, och används både inom grundforskning, för att förstå materiens egenskaper, och tillämpad forskning, för att utforska olika användningsområden för material eller för att utveckla nya material. ESS kan i princip ses som ett avancerat mikroskop för att studera olika material inom områden som exempelvis miljö, energi, nanoteknik, läkemedel och livsmedel.

Inom miljö- och energiforskning används neutroner bland annat som verktyg för utveckling av bättre och effektivare bränsleceller och batterier samt för analys av material för säker lagring av vätskor. Ingenjörsvetenskaperna utnyttjar neutroner bl.a. för att studera motorer under användning eller restspännningar i maskindelar. Tekniken kan också användas för att undersöka olika materials reaktioner på yttre stress och för att avslöja dolda svagheter. Forskningen om mjuka material rör till exempel flytande kristaller till elektroniska displayar, polymerer i plaster, ytaktiva ämnen i rengöringsmedel och material för proteser. Inom life science kan ESS användas för att avbilda proteiners atomstruktur, s.k kristallografi, vilket är av vikt för både läkemedelsutveckling och grundläggande biokemisk forskning.

Sveriges stora investering i ESS motiveras av de stora värden som förväntas skapas genom forskning, utbildning och teknik- och kunskapsutveckling. Dessutom antas att Sverige som värdland för anläggningen kommer att få ett betydande återflöde av resurser när lokala företag anlitas som leverantörer av varor och tjänster, både under investeringsfasen och när den reguljära verksamheten kommer igång. Starka värdlandseffekter har iakttagits för andra stora forskningsanläggningar – en stor del av leveranserna kommer från företag som är lokalisera i samma region som anläggningen.

ESS ägs gemensamt av de två värdländerna Sverige och Danmark och de övriga elva medlemsländerna Estland, Frankrike, Italien, Ungern, Norge, Polen, Schweiz, Spanien, Tjeckien, Tyskland och Storbritannien. ESS är formellt en ERIC (European Research Infrastructure Consortium), en organisationsform som skapats av EU genom direktiv Nr. 723/2009. Syftet med denna organisationsform är att möjliggöra för flera länder att på jämförelse villkor äga och driva en forskningsanläggning som rent fysiskt är beläget i ett av länderna. Formellt ligger ESS i både Sverige och Danmark, men har sitt säte i Sverige.
Danmark är värd för en del av anlägningen, ESS Data Management and Software Centre.

Den totala budgeten för att skapa ESS uppskattades vid byggningsstarten 2013 till 1,84 miljarder euro (i 2013 års priser), varav Sverige förväntades finansiera 35 procent och Danmark 12,5 procent. Övriga medlemsländer åtog sig att stå för resterande 52,5 procent av investeringarna. Medlemsländerna åtog sig även att medfinansiera en fas, benämnt initiala driftsfasen, som löper parallellt med de sista 6 åren av konstruktionsfasen med 810 M€. Den innefattar bland annat vissa kompletterande tekniska delar, installation, testning och intrimning av de tekniska komponenterna samt andra förberedande aktiviteter för vetenskaplig drift. Totalt beräknades en investering på 2,65 miljarder euro (2013 års priser) innan anläggningen skulle vara i stadigvarande drift från 2026.

Den ursprungliga budgeten har efter hand reviderats då ytterligare resurser krävts för byggnader och säkerhetsuppdateringar efter Fukushimakatastrofen. Enligt de senaste uppskattningarna från ESS är den nuvarande totala investeringsbudgeten i storleksordningen 3 miljarder euro fram till 2025. Den svenska statens totala finansieringsåtagande uppgår till ca 10 miljarder kronor för perioden fram till dess anläggningen tas i full drift, vilket nu förväntas ske i slutet av 2027. Sverige har hittills betalat ca tre fjärdedelar av det samlade svenska åtagandet.

Den pågående Covid 19-pandemin, tillsammans med tekniska utmaningar, har medfört förskjutningar och fördyringar av projektet. För att ta hänsyn till dessa har en ny projektplan arbetats fram av ESS. Den innebär att projektet färdigställs i slutet av 2027 och går in i stadigvarande drift 2028 (dvs. två år senare än planerat). Merkostnaderna härfor beräknas till omkring 550 miljoner euro i dagens penningvärde, vilket inkluderar ett tillskott om cirka 400 miljarder euro för 2026–2027. Diskussioner pågår mellan medlemsländerna om fördelningen av dessa kostnader, och Sveriges andel är således inte fastställd i dagsläget.

Sverige står för lejonparten av de direkta kontantbidragen till ESS. Dessa uppgick vid årsslutet 2020 till 9,4 miljarder kronor, varav Sverige svarade för 38 procent. De övriga medlemsländernas andelar betalas både genom kontantbidrag och genom så kallade in-kind leveranser. Detta innebär att de tagit på sig ansvaret för att utveckla olika instrument för ESS som finansieras i medlemslandet, och som när de färdigställs och installerats räknas som en del av landets finansieringsåtagande gentemot ESS. För många av medlemsländerna har in-kind bidrag varit nödvändiga för att skapa politisk enighet om att landet ska bli medlem i och bekosta utvecklingen av ESS – det har funnits en oro för att återflödet av resurser (i form av beställningar från ESS) annars inte skulle bli tillräckligt stort. (Tidigare forskning har visat att största delen av leveranserna går till företag som är lokaliserade i samma region som anläggningen.)

Situationen för Sverige har dock varit något annorlunda. Som en del av avtalet att ESS skulle placeras i Sverige gick Sverige med på att inledningsvis bara ge kontantbidrag och inte bidra med in-kind leveranser förrän 2021. En konsekvens av dessa val är att Sverige inte har levererat de avancerade tekniska
komponenterna för målstationen, acceleratorerna, eller något av de 15 avancerade instrument som ska vara på plats när anläggningen öppnas för experiment. Sedan svenska forskare fått möjlighet att bidra in kind har Vetenskapsrådet skapat ett in kind-program för ESS som löper under åren 2021–2025 med en summa av 150 miljoner kr (30 miljoner per år).

Att uppnå ställning som in-kind partner, ofta i konkurrens med utländska konsortier av företag, universitet och forskningsinstitutioner, är dock förenat med många utmaningar. Även om det kanske finns relevant kompetens i Sverige för att genomföra in-kind leveranser är det ofta svårt att sätta samman lämpliga konstellationer av forskare, företag och finansiärer för att hantera sådana krävande projekt. Detta har varit lättare i länder där delar av den avancerade forskningen bedrivs i institut som omfattar både forskare och industriell verksamhet, och som har tillgång till lämpliga finansieringskanaler. I dagsläget medverkar Lunds universitet, Uppsala universitet och Högskolan Väst som in-kind partner.
3 Samhällsekonomiska effekter av forskningsanläggningar

Detta avsnitt sammanfattar tidigare forskning och utvärdering av de samhällsekonomiska effekterna av forskningsinfrastruktur inom Big Science-området. Det är lämpligt att göra en åtskillnad mellan två stadijer i anläggningarnas livscykel – ett på ena sidan uppbyggnads- eller investeringsfasen och på andra sidan driftsfasen. Uppdelningen är meningsfull eftersom de effekter som uppkommer under investeringsfasen, då anläggningen byggs och instrument och utrustning installeras, skiljer sig från effekterna under driftsfasen, då den löpande verksamheten på anläggningen pågår kontinuerligt. I praktiken finns det dock en betydande tidsmässig överlappning mellan faserna, eftersom drift och infrastrukturutveckling ofta pågår parallellt. Alla instrument installeras inte samtidigt, utan de som byggs upp först tas i drift medan utveckling och konstruktion av andra instrument fortsätter. Investeringar i nya instrument tillkommer under anläggningens hela livstid, samtidigt som existerande utrustning uppdateras och modernizeras. Resultatet är att stora återkommande investeringar ingår i planeringen under lång tid – nyare och mer avancerad teknik ska integreras i anläggningarna i samband med att existerande utrustning kompletteras, moderniseras eller ersätts.

Tabell 1 på nästa sida sammanfattar de samhällsekonomiska effekter som identifierats i litteraturen, och som kommer att diskuteras i detta avsnitt. Effekterna a) – c) är starka under anläggningens uppbyggnadsfas, och kommer att vara i fokus för vår konceptuella diskussion. Det bör dock noteras att punkten b) förmodligen blir viktigare då en anläggning redan är i drift och forskarna som

2 Avsnittet bygger på Håkanson och Kokko (2021).
finns på plats har kunnat bygga upp stor kompetens inom sina specialområden. I fallet ESS är det därför troligt att effekterna a) och c) har varit de dominerande under uppbyggnadsfasen. Det är också viktigt att komma ihåg att Big Science-anläggningar skiljer sig från varandra beroende på vilka uppgifter den fast anställda vetenskapliga personalen har. I fallet ESS finns ett explicit antagande om att den fasta personalen har som uppgift att driva anläggning snarare än att vara engagerade i egen forskning, medan personalen på vissa andra anläggningar, till exempel CERN, även arbetar med aktiv forskning. Det är möjligt att dessa skillnader påverkar anläggningarnas effekter på samhällsekonomin, men vi har inte kunnat finna tidigare studier som fokuserar på denna jämförelse. Effekterna under punkterna f) – g) realiseras främst under driftsfasen, medan de under d) – e) förekommer under hela projektets livscykel. Dessa kommer också att diskuteras, av två skäl. För det första fokuserar de flesta existerande utvärderingar på anläggningar som redan är i drift, och resultaten av utvärderingen av ESS kommer oundvikligen att jämföras med dessa tidigare analyser – det är viktigt att redan i den konceptuella diskussionen göra klart att effekterna troligen kommer att se olika ut. För det andra kommer effekterna under punkterna f) – e) att bli allt viktigare även för ESS i takt med att anläggningen färdigställs.
<table>
<thead>
<tr>
<th>Fas</th>
<th>Effekt</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uppbyggnad, vidareutveckling och uppradering av anläggningen</td>
<td>a) Ökad efterfrågan och sysselsättning pga. industriens leveranser till anläggningen</td>
<td>Företag som levererar varor och tjänster till anläggningen får ökad omsättning och skapar nya jobb. När löner och vinster konsumeras leder detta till multiplikatoreffekter i resten av ekonomin</td>
</tr>
<tr>
<td>Uppbyggnad, vidareutveckling och uppradering av anläggningen</td>
<td>b) Teknikutveckling och innovationer som görs av forskarna på anläggningen</td>
<td>Utvecklingen av instrument och övrig utrustning bryter ny mark och skapar kunskap och teknik som kan användas för att utveckla nya varor och tjänster i andra delar av ekonomin</td>
</tr>
<tr>
<td>Uppbyggnad, vidareutveckling och uppradering av anläggningen</td>
<td>c) Teknikutveckling och innovationer bland leverantörerna</td>
<td>För att möta anläggningarnas höga krav på material och komponenter tvingas leverantörerna utveckla nya tekniska och organisatoriska lösningar som även påverkar företagens konkurrenskraft i andra delar av marknaden</td>
</tr>
<tr>
<td>Kontinuerligt</td>
<td>d) Ökad efterfrågan och sysselsättning pga. anläggningens löneutbetalningar</td>
<td>Anläggningens personalbehov bidrar direkt till sysselsättning och inkomster. När lönera konsumeras tillkommer multiplikatoreffekter i resten av ekonomin</td>
</tr>
<tr>
<td>Kontinuerligt</td>
<td>e) Utveckling av humankapital</td>
<td>Forskare, personal på anläggningarna och medarbetare i leverantörsföretagen utvecklar sin kunskap och kompetens</td>
</tr>
<tr>
<td>Driftsfas</td>
<td>f) Samhällsekonomiska effekter av grundforskning.</td>
<td>Grundforskningen på anläggningen skapar ny kunskap som ligger till grund för ny teknologi och nya varor och tjänster</td>
</tr>
<tr>
<td>Driftsfas</td>
<td>g) Kommersiell användning av anläggningen</td>
<td>Den kommersiella forskningen på anläggningen bidrar till utvecklingen av nya varor och tjänster för marknaden</td>
</tr>
</tbody>
</table>
3.1 Ökad efterfrågan och sysselsättning på grund av industrins leveranser till anläggningen.

De utbetalningar som görs från anläggningen till de företag som genomför arbeten och levererar instrument och komponenter leder till sysselsättning och inkomster hos leverantörerna och deras underleverantörer. När inkomsterna konsumeras skapar de efterfrågan och ökad ekonomisk aktivitet på andra håll i samhället. Hur stora dessa efterfrågemultiplikatorer är beror bland annat på hur mycket som på kort sikt läcker ut från systemet i form av import, sparande, och skatte-betalningar. På längre sikt kommer även "läckagen" att påverka samhället på olika sätt, till exempel genom ökade statsutgifter, men dessa effekter tas oftast inte med i analysen. Efterfråge-multiplikatorerna kan därför ses som de kortsiktiga effekterna av den ökning i omsättning och sysselsättning som följer av investeringarna. En bred indikation på hur stora dessa kortsiktiga effekter är ges av färsk data från ett urval av EU-länder, som tyder på att en extern ökning av exporten leder till en sammanlagd kortsiktig ökning av den inhemska efterfrågan med en multiplikatoreffekt på mellan 1,4 och 1,8 (Derkacz 2020). Variationerna mellan olika industrier kan dock antas vara stor.

En alternativ och mer långsiktig ansats för att skatta effekterna av investeringar ges av nyttokostradsanalys. Dessa bygger på försök att jämföra de samlade kostnaderna för en investering med den nytta som skapas över tid. Det grundläggande antagandet i all ekonomisk verksamhet är naturligtvis att nuvärdet av den samlade nytta måste överstiga kostnaden för att ett projekt ska kunna motiveras.3 Nyutto-kostnadsanalyser av CERN:s Large Hadron Collider som rapporteras i Florio (2019, 2021) visar att de skattade samhälleliga vinsterna är 1,2 gånger större än de sammanlagda kostnaderna. Gunnar Eliassons beräkningar av spillover-effekterna från utvecklingen av JAS Gripen (Eliasson 2010) visar på högre samhälsekonomiska vinst, med en nettonytta för samhället på hela 2,6 kronor för varje satsad krona. Det bör betonas att dessa mått inte är efterfrågemultiplikatorer, utan breda nettomått där alla identifierade kostnader och nyttor har tagits med i beräkningarna. Efterfråge-multiplikatorerna mäter den förändring i aggregerad omsättning som orsakas av en initial efterfrågeförändring, utan hänsyn till teknologispredning, förändringar i företagens konkurrenskraft eller innovationer som skapas av projekten.

Analyser av multiplikatorerna kopplas ofta ihop med studier av sysselsättningseffekterna av externa efterfrågeöknningar. Amerikanska studier av "jobb-multiplikatorer" har påvisat särskilt stora positiva effekter av förändringar som ökar antalet högt betalda jobb. Moretti (2010, 2012) diskuterar bland annat utvecklingen i Silicon Valley, och finner att via multiplikatoreffekterna bidrar varje nytt hög-teknologiskt jobb till att fem andra arbetstillfällen skapas. Två av fem av de nya jobben är lågkvalificerade (som restaurangbiträden, pizzabagare och massörer) men två av de tre andra jobb som skapas kräver hög utbildning (exempelvis inom medicin och juridik). Den allmänna uppfattningen är att sysselsättningsmultiplikatorerna i enskilda EU-länder är lägre på grund av en

3 Utmaningen i många projekt är naturligtvis att många nytutor och kostnader inte är direkt mätbara i kronor och ören.
mindre rörlig arbetsmarknad och större efterfrågeläckage i form av skatter och import. På EU-nivå är det dock troligt att jobb-multiplikatorerna är i princip lika höga som i USA. EU:s input-output-modell BIOSAM visar till exempel att ett nytt export-genererat jobb inom sektorerna ”elektronisk utrustning” eller ”övriga maskiner och utrustning” leder till fem nya jobb i andra sektorer. Nya export-genererade arbetstillfällen inom avancerade service-yrken som ”finansiella tjänster” har lika stora effekter. Mindre avancerade jobb, till exempel inom byggbranschen, beräknas ha jobb-multiplikatorer på ungefär 2,5, dvs. ett nytt jobb skapar ett och ett halvt jobb någon annanstans i samhället.

Eftersom jobb-multiplikatorerna baseras på input-outputanalyser som också omfattar nya arbetstillfällen inom den offentliga sektorn tenderar dessa att vara något högre än de enkla efterfrågemultiplikatorerna. Dessutom krävs att man kontrollerar för skillnader i kapitalintensitet mellan industrier – om en bransch har hög kapitalintensitet skapar en given efterfrågeökning inte lika stor direkt sysselsättning som om branschen istället vore arbetsintensiv.

3.2 Teknikutveckling och innovationer som görs av forskarna på anläggningen.

En del av de innovationer som skapas i samband med investeringar i forskningsanläggningar, till exempel när nya instrument konstrueras och tas i bruk, görs med forskare på anläggningen. På denna punkt kan man värdera sig skillnaderna mellan mognas anläggningar som lägger till nya instrument och helt nya greenfield-anläggningar som är i början av sin livscykel. Anläggningar som redan är i drift har oftast en omfattande stab av egna experter och forskare, och dessa har en betydande kapacitet för att medverka i teknikutveckling och innovationer. Situationen för en ny anläggning som ESS kan värderas se något annorlunda ut. Ett antal forskare och andra medarbetare rekryteras redan i ett tidigt stadium av en ny anläggnings livscykel för att bidra till planering, specificering, uppköps- och beställarkompetens och installation av instrument och annan utrustning, men det är möjligt att deras bidrag till innovationer och teknikutveckling är mindre än för de regelbundna uppdateringarna och nyinvesteringarna i CERN-fallet. Detta gäller särskilt eftersom ESS personal kommer att fokusera sitt arbete på att ge stöd till externa forskare (snarare än på egen forskning).

Eftersom Big Science-anläggningar ska kunna bidra till att forskningsfronten flyttas framåt krävs instrument och utrustning som är mer avancerade än det som redan finns på andra håll. Det är forskarnas behov som bestämmer vilken utrustning som krävs, och det är också forskarna som besitter den kunskap som krävs för att planera och designa instrumenten. Detta utvecklingsarbete leder regelbundet till innovationer – lösningar som inte endast är värdefulla för det specifika instrumentet eller det tänkta användningsområdet på forskningsanläggningen, utan även utanför anläggningen. En stor del av de forskare som står för arbetet och innovationerna finns troligen på universitet och forskningsinstitut utanför anläggningarna, men ofta i samarbete med forskare som arbetar på anläggningarna.

Med tanke på att det finns extremt stora skillnader i kommersialiserings- och innovationspotentialen för de olika tekniska lösningar som tas fram för forskningsanläggningarna är det omöjligt att sätta ett teoretiskt värde på den samhällsekonomiska nytta som dessa innovationer har utanför anläggningen. I många fall är det troligt att det inte finns något omedelbart kommersiellt värde i en ny teknisk lösning, även om kunskapen långsiktigt kan komma att bidra till användbar "civil" teknologi – i andra fall, till exempel World Wide Web, är det implicita värdet i princip för stort att beräkna. Det bör dock noteras att stora anläggningar som CERN har bedömt teknologiutvecklingen som så viktig att särskilda "technology transfer offices" (TTOs) etablerats för att hantera teknologiöverföring, immaterialrätt och kommersiell användning av de teknologier som utvecklas under verksamheten. Om systematisk patentering av ny teknik sker rutinmässigt och användningen av dessa patent följs upp kontinuerligt är det åtminstone i princip möjligt att mäta en del av det samhällsekonomiska värdet av de innovationer som görs i samband med investeringarna i anläggningen. Detsamma gäller de innovationer som skapas som ett resultat av den akademiska forskningen på anläggningen, även om det primära målet för denna verksamhet är att bidra till vetenskap och mänskligt kunnande i bredare bemärkelse. De kommersiella och samhällsekonomiska effekterna av verksamheten värderas dock allt högre (och större ansträngningar görs på många håll för att mäta dem). Beslut om investeringar i stora forskningsanläggningar tas fortfarande utifrån vetenskapliga argument och grundforskningens behov, men på grund av de höga kostnaderna är det enklare att nå politisk enighet om investeringar som också bidrar till betydande samhällsekonomiska vinster.
3.3 Teknikutveckling och innovationer bland leverantörerna.

De forskare som deltar i utvecklingen av forskningsinfrastrukturen har stora teoretiska kunskaper och kan ta fram ritningar, design och ibland även prototyper till de nya anläggningarna och den utrustning som krävs. Forskarna och universiteten har emellertid inte goda förutsättningar för att själv bygga anläggningarna eller instrumenten. Samarbete med leverantörer från industrin är nödvändig. I många fall kräver dessa samarbeten överföring av både teknologi och mera grundläggande kunskaper från forskarna, som agerar som beställare, till leverantörerna, som ska tillverka och installera utrustningen. Det lärande och de innovationer som uppnås i samarbetet mellan forskningsanläggningar och leverantörer kan leda till stora positiva effekter för både leverantörsföretagen och samhällsekonomin. Leverantören kan använda sin nya kunskap och kompetens till att förbättra existerande produkter – när leverantören uppnår högre krav på hållbarhet, precision eller andra prestanda kan dessa egenskaper integreras i andra produkter. Ett exempel kan vara utvecklingen av kommunikationskablar och instrument som klarar av strålningen i en partikelaccelerator, och som sedan kan anpassas till användning i kärnkraftverk och andra miljöer med hög strålningsbelastning. Det kan ibland också finnas förutsättningar att utveckla helt nya produkter med helt nya användningsområden.

Innovationerna görs ibland av de forskare som konstruerar nya instrument (och i dessa fall äger forskarna, eller det universitet eller forskningsanläggning de arbetar på, de immateriella rättigheterna, även om rätten till kommersiell användning kan licensieras till leverantören eller andra företag), men innovationerna kan också ske hos leverantören. Även om anläggningarnas upphandlingsprocesser ofta utgår från detaljerade ritningar och kravspecifikationer är dessa inte alltid optimala. Forskarna på universiteten och forskningsanläggningarna är inte specialister på tillverkning, och leverantörerna kan ofta se lösningar som är enklare eller mera ekonomiska än de som skisseras av beställarna. Därför kan samarbetet med forskningsanläggningarna leda till innovationer även i leverantörens egen verksamhet. Dessa innovationer återspeglar kanske inte alltid stora forskningsinsatser, utan fokus ligger ofta på områden som är viktiga för kommersialisering, såsom teknologins
användningsområden och kostnaden för att tillverka den utrustning som anläggningen efterfrågar.

Dessutom finns en grupp effekter som på ett betydande sätt kan påverka leverantörems produktivitet, konkurrenskraft och utveckling utan att nödvändigtvis ge spår i form av nya patent eller produkter som är direkt relaterade till leveranserna. Den kunskapsöverföring som sker mellan forskare och leverantörer kan i vissa fall leda till att leverantören ser möjligheter och lösningar i affärsrelationer som inte har någon koppling till anläggningarnas verksamhet. Det faktum att dialogen med forskarna skapas en djupare förståelse för specifika teknik- och kunskapsområden bidrar till att höja leverantörens allmänna kompetens (med ännu tydligare effekter på de enskilda medarbetare som varit involverade i samarbetet). Anläggningarnas höga krav i samband med anbudsförfaranden och leveranser – med noggranna specificationer och krav på dokumentation, kvalitet, toleransmarginaler och leveranstider – kan tvinga leverantörerna att se över och stärka sin organisation och sina rutiner för att kunna möta behovet. När detta väl är gjort är det inte troligt att leverantören återgår till det gamla, utan nya och mer effektiva arbetsformer kan förväntas förbättra leverantörens konkurrenskraft även i andra affärsrelationer. Bara det faktum att leverantören klarat av att tillfredsställa de höga krav som ställs av forskningsanläggningarna har också ett betydande marknadssförädlingsvärde: det kan ses som en bekräftelse av företagets höga tillförlitlighet, kvalitet och kompetens. Denna typ av effekter har diskuterats mera utförligt i litteraturen om externaliteter och ”spillovers” från utländska direktinvesteringar, där de utländska investerarna ofta har ett teknologiförsprång (särskilt när det handlar om multinationella företag från industriländerna som investerar i tillväxtekonomier) och ställer högre krav än vad leverantörerna är vana vid från den lokala marknaden (MacDougall 1960, Blomström och Kokko 1997).

Dessutom är det viktigt att notera att de höga kraven från forskningsanläggningarna inte stannar vid förstaledsleverantörerna, utan fortfarande sig nedåt och påverkar stora delar av underleverantörskedjan (Nordberg et al. 2003, Florio et al. 2018). När förstaledsleverantören ställs inför en ny krävande specification är det ofta nödvändigt att säkerställa och dokumentera att underleverantörerna också skärper sina toleransmarginaler, höjer kvaliteten på sina produkter och uppfyller övriga leveransvillkor.
CSIL (2019) diskuterar hur leverantörerna till CERN påverkats av samarbetet med forskningsanläggningen, och redovisar resultaten från intervjuer med ett knapp 30-tal leverantörsföretag där samarbetet uppfattas vara framgångsrikt. De olika effekter som identifierats i analysen kategoriseras under följande sex punkter:

- Ökad försäljning till existerande kunder
- Nya kunder
- Starkare intern organisatorisk förmåga
- Starkare renommé
- Starkare teknisk kompetens
- Utveckling av nya varor eller tjänster
- Minskade produktionskostnader

Dessa punkter återkommer i avsnitt 5, där vi redovisar resultaten av en enkät som skickats ut till ett urval av de svenska leverantörerna till ESS – enkäten är utformad så att resultaten ska kunna jämföras med tidigare studier. Dessutom sammanfattar CSIL (2019) effekten på leverantören i en tvådimensionell matris som visar den sammanlagda effekten av den tekniska utveckling och marknadsutveckling som varit möjlig tack vare vinsterna från samarbetet med CERN. Figur 2 illustrerar den grova kvantifieringen av effekter för ett av företagen medan Figur 3 visar förändringarna i teknologi och marknadposition.

Figur 2. Kvantifiering av effekter från samarbete med CERN. Källa: CSIL (2019)
En viktig slutsats från analysen (även om den bara täcker ett litet antal företag) är att det finns betydande skillnader i vilka effekter de olika leverantörerna påverkats av, och hur stora effekterna varit. Helt klart är att utfallet påverkas både av leverantörens kunskaper och kompetens i utgångsläget, de krav och teknologiska utmaningar som leverantören ställs inför, och graden av samarbete och kommunikation med forskare och experter på anläggningarna. Produkter och tjänster som redan finns i det ordinarie utbudet leder till svagare effekter än sådana som skapas speciellt för anläggningen. Till exempel har leveranser av spetsteknologi till CERN visat sig leda till en stark ökning av leverantörernas immateriella tillgångar, antalet patent, produktivitet och intäkter och vinst (Castelnovo et al. 2018). Som noterats ovan är det också troligt att effekterna kan bli starkare om leverantören kan engageras i ett tidigt stadium av processen. Detta ger utrymme för utveckling av de nya teknologiska lösningar som har det största samhällsekonomiska värdet – i de fall då leverantören involveras först när en anbudsinfordran publiceras finns det ofta inte utrymme att erbjuda något annat än det som redan finns på lager.

Med hänsyn till dessa skillnader är det svårt att förutse hur enskilda företag kommer att påverkas när de blir leverantörer till en forskningsanläggning. De generaliseringar som är möjliga får i stället baseras på ex post-utvärderingar av data på genomförda affärer. De första analyserna av den samhällsnytta som genererades av leveranser från näringslivet till forskningsanläggningar kan spåras tillbaka till 1970- och 80-talet och rör CERN och ESA (Schmied 1975,

Autio et al. (2011) är en enkätundersökning som syftar till att dokumentera och mäta tre typer av lärande-effekter på leverantörerna: a) innovationer, dvs. nya produkter och teknologier, b) nya marknader, och c) ökad effektivitet och kapacitet (som ett resultat av högre kompetens inom områden som produktutveckling, logistik, marknadsföring, osv.). Ungefär hälften av leverantörerna rapporterade att arbetet med CERN bidragit med nya tekniska kunskaper, och 38 procent av företagen hade utvecklat nya produkter till kunder utanför CERN. De flesta företag hade också lyckats nå nya marknader, både tack vare de nya nätverk som samarbetet med CERN skapat och marknadsföringsvärdet av leveranserna till Big Science. Två tredjedelar av företagen hade höjt sin kapacitet, främst tack vare starkare FoU- och marknadsföringsfunktioner.

Florio (2019) är baserad på en bred nytto-kostnadskalkyl av CERN:s Large Hadron Collider, där nettovinsterna av anläggningarnas verksamhet relateras till de samlade kostnaderna för planering, konstruktion och drift av anläggningarna. Analysen urskiljer i synnerhet två områden där stora samhällsekonomiska vinster går att urskilja: a) spillovereffekter som bidrar till att leverantörerna genererar nytto som har att göra med större FoU-insatser, fler patent, och högre produktivitet, omsättning och vinster, och b) högre löner på grund av den ökning av humankapitalstocken som alstras bland CERN:s medarbetare och de studenter och forskare som är kopplade till CERN. Sammantaget visar analysen att varje euro som satsats på CERN har resulterat i en ökning av samhällsnynkten till ett värde av 1,2 euro. Analysen härleder ungefär en tredje del av dessa nettovinster till effekterna på leverantörer, medan ökningen i humankapitalstock ger en lika stor avkastning. Den sista tredjedelen av samhällets nettovinster kommer från kulturella värden och den nytta som enskilda individer uppger att de känner till de vetenskapliga landvinningarna och LHC bidrar till.

Technopolis (2020a, b) fokuserar heller inte enbart på effekterna bland leverantörsföretagen, utan försöker kvantifiera de bredare samhällsekonomiska effekterna av Storbritanniens deltagande i CERN – detta omfattar (förutom efterfrågemultiplikatormer) de flesta effekter som diskuteras i detta avsnitt. Vad gäller leverantörerna är resultatet särskilt intressanta. Utvärderingen identifierade omkring 500 brittiska företag som leverantörer till CERN. Under de tio år som undersökes (2009–2018) uppgick deras sammanlagda försäljning till CERN till 217 miljoner GBP, med leveranser på områden som IT, elektronik, radioteknologi och olika tjänster. Dessutom beräknas att de olika effekterna som diskuterats ovan ledde till att företagens försäljning ökade med ytterligare 1000 miljoner GBP under tioårsperioden, och att deras samlade vinstsumma ökade...
med 100 miljoner GBP. Den främsta orsaken var en ökning i medarbetarnas tekniska och vetenskapliga kunskaper och kompetens, som bland annat bidrog till att tre fjärdedelar av företagen rapporterade att deras innovationsförmåga hade förbättrats. Över 90 procent av företagen förväntade sig också att de skulle delta i CERN:s framtida upphandlingar.

3.4 Ökad efterfrågan och sysselsättning på grund av anläggningens löneutbetalningar

På samma sätt som det skapas ny efterfrågan och sysselsättning när anställda i leverantörskedjan får betalt och konsumerar sin inkomst kommer personalen på anläggningen (forskare, administratörer, lokalvårdare, osv.) också att bidra till omsättning och arbetsstillfällen via sin egen konsumtion. En anledning att separera dessa effekter från de multiplikatorer som genereras av leverantörerna är att de ofta kommer att vara geografiskt koncentrerade till den region där anläggningen är belägen. De regionalekonomiska konsekvenserna kan vara betydande. I synnerhet gäller detta om anläggningen sysselsätter många medarbetare från andra länder (eller regioner i samma land) eftersom effekterna då också omfattar den regionala bostadsmarknaden och den offentliga infrastrukturen. Vad gäller efterfrågemultiplikatorer och jobb-multiplikatorer används samma resonemang som under punkten a), med undantag för möjliga justeringar på grund av att konsumtionsmönstret hos utländska medarbetare kan vara annorlunda. Man kan till exempel anta att sparande, privata investeringar och kanske även konsumtion i större utsträckning sker utomlands, vilket skulle reducera multiplikatoreffekterna i regionen där de arbetar (Lowell och Gerova 2004).

4 Principerna för fördelning av forskningstid varierar, med vissa anläggningar som i huvudsak betonar det akademiska värdet av forskningen (som motiveras i ansökningar från forskargrupper) oavsett forskarnas hemvist, medan andra anläggningar prioriterar forskare från de länder som har bidragit till anläggningens finansiering.

5 Samtidigt bör det noteras att anläggningarnas vetenskapliga personal har forskarkompetens och i många fall deltar de aktivt i den forskning som genomförs. Dessutom görs forskningsinsatser som leder till vetenskapliga publikationer även under investeringsfasen, i samband med att utrustning och instrument konstrueras, testas och kalibreras.
hand, eftersom det krävs specialkunskaper för att förbereda experiment och preparera prover, sköta utrustning och mätinstrument och tolka och analysera resultaten. Dessa funktioner hanteras därför i större eller mindre utsträckning av anläggningens vetenskapliga personal.6 Dessutom finns tjänster som är relaterade till den fysiska driften av anläggningen, administration, samordning med universitet och lärosäten, och liknande funktioner. Anläggningens vetenskapliga personal bidrar på ett avgörande sätt till de vetenskapliga och kommersiella mervärden som skapas genom användningen av forskningsanläggningen, men det är varken möjligt eller meningsfullt att försöka urskilja deras separata bidrag till de samhällsekonomiska nyttor som uppkommer. I stället kan de samhällsekonomiska värden som genereras av forskningsanläggningens drift (och som inte ingår i någon annan post) approximeras via de efterfråge- och jobbmultiplikatorer som diskuterats ovan. Lönerna för de anställda och alla utbetalningar från anläggningarna skapar sysselsättning och utgör inkomst för andra aktörer i samhället, och när denna inkomst spenderas skapas ytterligare efterfrågan och sysselsättning.

3.5 Utveckling av humankapital

Medarbetarna på Big Science-anläggningarna, de forskare som får möjlighet att delta i projekt som utnyttjar anläggningarna och de leverantörer som deltar i samarbeten med anläggningarna kan ta till sig kunskaper och utveckla kompetenser, som skulle vara svåra eller omöjliga att uppnå på annat sätt. Dessutom genomför många anläggningar riktade utbildningsprogram, som omfattar studenter, doktorander, forskare och tekniker.

Anläggningens medarbetare utvecklar specialkunskaper som har ett stort värde även utanför Big Science-världen. De specifika tekniska kunskaperna som utvecklas efterfrågas i många andra sektorer: det beräknas till exempel att det finns 50,000 partikelacceleratorer i bruk utanför anläggningarna, inom industri och sjukvård (Gutleber 2021). Kunskaper i programmering, informationsbehandling, Big Data och AI har ännu bredare tillämpningar. Analyser från CERN visar att de flesta medarbetare som lämnat och inte längre arbetar med högenergifysik i stället hittat jobb i den privata sektorn, där de arbetar med finansiell analys eller inom IT och andra högteknologiska områden (CERN 2019).

6 Vid vissa forskningsanläggningar har det dessutom etablerats kommersiella intermediärer som hjälper forskare och kommersiella användare med förberedelse och analys av experiment (medan anläggningarnas personal har en central roll för genomförandet av experimenten).
omfattar tusentals vetenskapsmän i sina projekt blir de samhällsekonomiska vinsterna betydliga. Det är svårt att beräkna de monetära vinsterna för leverantörsföretagens personal (och de ingår i viss utsträckning i de multiplikatorer som diskuterats ovan). En utmaning är att vinsterna som kopplas till humankapital ofta realiseras i samband med att de anställda som utvecklat sin kompetens rekryteras av andra arbetsgivare, som ser nyttan av special-kunskaperna och är villiga att betala för dem. Litteraturen om spillovers från utländska direktinvesteringar identifierar också arbetskraftens rörlighet som en av de viktigaste kanalerna för teknologipridningen till det lokala näringslivet (Blomström och Kokko 1997). Vi har emellertid inte funnit några detaljerade studier om mobilitet och karriärutveckling för medarbetarna i leverantörsföretagen, eller effekterna på teknologipridning av mobilitet. Det är dock värt att notera att flera studier rapporterar att möjligheten att arbeta i en Big Science-miljö hjälper leverantörsföretagen att rekrytera kvalificerad arbetskraft just på grund av möjligheterna att kunskapsutveckling (Technopolis 2020b).

Liknande positiva incitament verkar även bidra till att höja intresset för högre utbildning tekniska och vetenskapliga ämnen. Den uppmärksamhet som Big Science får i medierna, tillsammans med den utåtriktade verksamhet som till exempel CERN driver, med studiebesök och utbildningsprogram för skolor och lärare, verkar leda till bättre studieresultat för de deltagande eleverna (Technopolis 2020b). Detta i sin tur hjälper till att öka intresset för högre utbildning i STEM-ämnen i allmänhet.

3.6 Samhällsekonomiska effekter av grundforskning.

Ett ytterligare problem är att de samhällsekonomiska nyttorna av grundforskning sällan genereras inom den akademiska sektorn, utan snarare i samverkan med näringslivet, när kunskap och forskningsrön blir till praktiska tillämpningar. En utmaning här gäller kommunikationen mellan forskarna och tillämparna. Även

Icke desto mindre görs stora ansträngningar för att mäta forskningens kvalitet och påverkan. Antalet vetenskapliga publikationer, statusen på de tidskrifter och förlag där dessa publiceras, antalet citat till publikationerna och andra mått används flitigt, men dessa ger endast en partiell bild av det potentiella samhällesekonomiska värdet av forskningen. Vad gäller den forskning som genomförs på Big Science-anläggningarna är det ändå troligt att dessa standardmått ger en rimlig bild av det vetenskapliga värdet av forskningen. Tillgången till avancerad utrustning ger möjligheter att ställa nya frågor och att ge nya mera detaljerade svar till gamla frågor, vilket betyder att möjligheterna att publicera resultaten är goda, och att de bibliometriska data som behövs för utvärderingen kommer att finnas tillgängliga. Att mäta den samhällsnyttan som alstras specifikt av grundforskningen som bedrivs på anläggningarna är däremot en utmaning som troligen är för svår för att hantera inom ramen för effektutvärderingar som fokuserar på anläggningarna. Den bredare samhällsnyttan av forskningen bör därför bedömas tillsammans med och enligt samma kriterier som annan grundforskning som sker på universitet och forskningsinstitutioner.

De olika utvärderingarna av stora forskningsanläggningar runt om i världen har i varierande utsträckning också identifierat andra effekter som påverkar den breda samhällsnyttan. Amison och Brown (2021) och Technopolis (2020b) pekar på det diplomatiska eller politiska värdet av Storbritanniens deltagande i de internationella forskningsanläggningarna. De argumenterar till exempel att CERN varit en viktig plattform för att föra fram landets vetenskapliga agenda, och möjliggjort samarbeten mellan länder vars bilaterala relationer annars inte är särskilt vänskapliga.

3.7 Kommersiell användning av anläggningen

När en forskningsanläggning tillåter kommersiella företag att nyttja anläggningens utrustning och instrument för experiment (mot betalning) kommer de samhällsekonomiska effekterna troligen att vara enklare att mäta än när det gäller grundforskning. Eftersom de kommersiella brukarna betalar för att använda anläggningen är det troligt att deras mål är att få fram resultat som bidrar till produktutveckling, konkurrenskraft och i slutändan ekonomisk vinst. Tidsperspektiven inom näringslivet är ofta kortsiktigare än inom akademin. Framgångsrika experiment kan förväntas leda till avtryck i form av patent, prototyper och innovationer. Företagen som genomför experiment och analyser kommer troligen att vara involverade i kommersialiseringen av upptäckterna, om detta blir aktuellt. Då grundforskning så småningom leder till innovationer är det svårare att förutse var och av vem innovationer och kommersialisering genomförs.

Däremot finns det goda förutsättningar att ex post utvärdera effekterna av den kommersiella användningen av anläggningarna. De kommersiella brukarnas utveckling och tillväxt kan följas upp, men det kräver detaljerad information om företagens tillväxt, produktutveckling och marknadsexpansion. Även på detta område kommer det sannolikt att finnas stor variation vad gäller utfall och resultat – många experiment kommer inte att leda till några betydande resultat, medan ett fåtal kan förväntas vara framgångsrika och skapa stora mervärden. Således är det svårt att generalisera från enstaka observationer. Vi har inte kunnat finna mera omfattande systematiska utvärderingar av de kommersiella bruket av forskningsanläggningar i litteraturen, vilket innebär att framtidiga analyser blir särskilt viktiga både som fallstudier och som observationer i bredare systematiska studier av de samhällsekonomiska effekterna.

3.8 Sammanfattning av kunskapsläget

Analysen av de samhällsekonomiska effekterna av Big Science-anläggningarnas verksamhet har vuxit under senare år, och det finns idag en bred samstämmighet om att de stora investeringarna som görs också har betydande positiva effekter. De bidrar till grundforskning och viktiga landvinningar inom de specialiserade
forskningsfält som använder anläggningarna. Investeringarna skapar också efterfrågan, sysselsättning, innovationer och nya tekniska lösningar utanför den akademiska världen, och bidrar på så sätt till ekonomisk tillväxt och välfärd. Sammantaget erbjuder analyserna och utvärderingarna både en kategorisering av olika typer av effekter, illustrationer från mängder av specifika fall, och försök att kvantifiera effekterna. Den samlade bilden är att de offentliga investeringarna i Big Science-anläggningar gett en god samhällsekonomisk retur.

Samtidigt är det viktigt att betona att ingen av de existerande studierna eller analyserna är direkt tillämpbar på det fall som behandlas i föreliggande rapport. En analys av de samhällsekonomiska effekterna av ESS på Sverige skiljer sig från existerande studier på två punkter. För det första ligger fokus på ett mycket tidigt stadium av anläggningsens livscykel. ESS är fortfarande under utveckling och utrustningen har ännu inte använts för forskning. Existerande studier har främst fokuserat på anläggningar som redan är i drift. Detta innebär att analysen av de samhällsekonomiska effekterna av ESS främst kommer att omfatta punkterna a) och c) i Tabell 1. För det andra har Sverige hittills inte tagit ansvar för utveckling och konstruktion av neutronkällan, acceleratororna, eller något av de 15 instrument som ingår i den initiala utrustningen (även om svenska universitet finns med som in-kind partner till utländska leverantörer). Svenska företag har däremot svarat för en mycket stor andel av arbetet inom det breda området ”bygg och anläggning”. En stor del av diskussionen i litteraturen handlar om avancerade tekniska lösningar som rör vetenskapliga instrument, elektronik, optik, och IT snarare än bygg- och anläggningsprocesser. Detta betyder rimligen att det finns anledning att tona ned förväntningarna på samhällsekonomiska effekter i fallet ESS fram till 2021 – i synnerhet gäller detta jämförelsen med de mest omfattande tidigare analyserna, såsom Technopolis (2020a, b) utvärdering av effekterna av CERN på den brittiska ekonomin.
4 Leveranser till ESS 2018–2020

Vi har inte haft tillgång till information om hur mycket Sverige (och andra länder) investerade i planeringen av ESS och i besluten om lokalisering och slutlig design innan 2013, men det kan antas att kostnaderna varit betydande. I ESS-konsortiets räkenskaper har Sverige under tiden före 2013 bidragit till kostnaderna för pre-construction med 444 miljoner kronor (närmare 0,5 miljarder kronor i dagens penningvärde). Under perioden 2013–2021 uppgick Sveriges samlade kontantbidrag till omkring 6,6 miljarder kronor (motsvarande 7 miljarder kronor i dagens penningvärde). Efter ett ytterligare bidrag på 849 miljoner kronor i januari 2022, har landet därmed uppfyllt tre fjärdedelar av det ursprungliga åtagandet.

Från ett tidigt stadium har ESS varit en betydande ekonomisk aktör. I totalbudgeten för perioden 2013-2025 på 2 760 miljoner euro ingick 2 210 miljoner euro för construction, innefattande bygget av anläggningen inklusive all utrustning, där in-kind kontrakt för utveckling och leverans av spallationskällan, acceleratorerna och beräknades komma att svara för ett värde på runt 550 miljoner euro7, samt 760 miljoner euro för initial operations, inkluderande driften fram till slutet av 2025, då ESS enligt tidsplanen ESS skulle tas i full drift och öppnas för externa användare.

Svenska företag har varit framgångsrika när det gäller att konkurrera om leveranser till ESS.8 Från oktober 2015, då verksamheten överfördes i European Spallation Source ERIC, till slutet av 2020 har svenska företag erhållit order till ett värde på drygt 8,5 miljarder kronor (exklusive moms). Drygt hälften av dessa leveranser avsåg Skanska. Under åren 2018–2020, för vilka mer detaljerad information föreligger, svarade svenska leverantörer (inklusive utlandsägda företag) för 76 procent av de totala uppköpen. Också här svarade Skanska för närmare hälften. Alla dessa pengar har naturligtvis inte stannat i Sverige: många av företagen har anlitat utländska underleverantörer, många har också hyrt in personal från andra länder, och det är också troligt att en del utländska företag etablerat svenska dotterbolag för sitt samarbete med ESS. Det är omöjligt att med precision bestämma vilken andel av de ”svenska” leveranserna som har

7 Se https://europeanspallationsource.se/in-kind-contributions
8 Termen svenska företag omfattar här självständiga svenska företag, dotterbolag till svenska koncerner och utlandsägda dotterbolag i Sverige.
utförts av utländska underleverantörer eller av moder- och systerbolag i utlandet. För Skanska uppskattas denna andel ligga mellan hälften och två tredjedelar av koncernens samlade uppdrag.

Följande stycken sammanfattar information om leveranserna till ESS under perioden 2018–2021. Vi ser i tur och ordning på fördelningen av leveransvärden mellan länder, den geografiska fördelningen av leveranserna från svenska företag, fördelningen av leveranserna per bransch, samt de främsta svenska leverantörerna under perioden.

4.1 Fördelning mellan länder

Om Skanska exkluderas blir fördelningen jämnare, vilket återspeglar det faktum att själva bygget utgör den absolut dominerande delen av den svenska insatsen under investerings- eller uppbyggnadsfasen.

4.2 Geografisk fördelning av svenska leveranser

Figur 5 visar fördelningen av leveranserna från svenska företag per kommun när Skanska inte medtages. Även utan Skanska syns en tydlig koncentration till
närområdet, dvs. Skåne, med omkring 35 procent av faktureringen, och Stockholomsområdet, som också registrerar omkring en tredjedel av faktureringen (till viss del eftersom många huvudkontor återfinns där). Göteborg och västkusten har också betydande andel av leveranserna, medan resterande 10 procent främst återfinns i resten av södra och mellersta Sverige – leveranserna från norra Sverige är obetydliga. En slutsats är att de regionalekonomiska effekterna av ESS i Skåne med största sannolikhet är mycket betydande.

Figur 5. Geografisk fördelning av svenska leveranser till ESS 2018–2020 (exkl. Skanska)

4.3 Branschfördelning av leveranserna

Figur 6 visar hur värden av leveranserna till ESS fördelades över breda branschgrupper (enligt leverantörens SNI-kod) under perioden 2018–2020. Både svenska och utländska leverantörer ingår i figuren. En mycket tydlig observation är att bygg- och anläggningssektorn (SNI-avdelning F, ”Byggverksamhet”) har haft en ledande roll. Skanska och ett antal andra företag inom denna breda bransch står för mer än 60 procent av alla leveranser till ESS. Den näst största branschgruppen är också enkel att identifiera – SNI-avdelningen ”Verksamhet inom juridik, ekonomi, vetenskap och teknik”. I första hand omfattar denna kategori ett antal stora konsulthus som på olika sätt bidragit till planering och design av anläggningen. SNI-avdelningen ”Utbildning” är också betydande, om än något missvisande – här ingår främst de forskningsuniversitet som samarbetat med ESS. Tillverkningsindustrins begränsade roll är också värd att notera. Även
om högteknologisk verksamhet ofta kräver insatser från tillverkningsindustrin är det tydligt att det svenska kunskapssamhällets insatser till ESS i första hand levererats av tjänsteföretag och universitet snarare än företag från tillverkningsindustrin.

Figur 6. Leveranser till ESS per SNI-avdelning 2018–2020 (MSEK)

<table>
<thead>
<tr>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Övriga sektorer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Utbildning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Finans- och försäkringsverksamhet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Informations- och...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Handel; reparation av motorfordon och...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Byggverksamhet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Vattenförsörjning; avloppsrening...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Försörjning av el, gas, värme och kyla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Tillverkningsindustrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I jämförelse med konsulttjänsterna har tillverkningsindustrins leveranser varit små, med en total fakturering som inte uppgår till mer än 235 miljoner kronor. Figur 8 delar upp leveranserna från tillverkningsindustrin (SNI-avdelning C) på de främsta undergrupperna. Den största enskilda industrin är ”Reparation och installation av maskiner och apparater”, vilket i första hand omfattar installation av utrustning och instrument (installationen av elledningar, vatten och avlopp ingår i SNI-avdelningen ”Byggverksamhet”). Särskilda metallvaror och icke-metalliska mineraliska produkter (främst betong) behövs för konstruktionen av de byggnader där utrustningen ska installeras, medan kategorin ”kemikalier” främst gäller för de industrigaser som behövs för anläggningens kylsystem.
Det bör dock noteras att leveranserna direkt från tillverkningsindustrin underskattar industriföretagens insatser. Förutom direktleveranser från industrin har ESS också spenderat betydande summor på inköp av olika industriprodukter från handelsföretag. Till exempel har datorer, elektroniska komponenter, mätinstrument och annan utrustning som inte omfattas av in-kind kontrakt främst levererats av specialiserade partihandlare.

4.4 Svenska leverantörer

Tabell 2a till 2d visar de 24 företag som fakturerade för mer än 25 miljoner kronor under perioden, och som gemensamt svarade för 85 procent av de samlade svenska leveranserna till ESS. Skanska var totalt dominerande, med nästan 60 procent av de svenska leveranserna. Flera företag (till exempel Skanska, AFRY och Sweco) har fakturerat ESS från flera av sina dotterbolag: i tabellen har dessa summerats under moderbolaget.

Tabell 2a. Svenska leverantörer med leveranser över 3 miljarder kronor till ESS 2018–2020

<table>
<thead>
<tr>
<th>Företag</th>
<th>Bransch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanska</td>
<td>Bygg och anläggning</td>
</tr>
</tbody>
</table>

Tabell 2b. Svenska leverantörer med leveranser mellan 100 och 250 miljoner kronor till ESS 2018–2020

<table>
<thead>
<tr>
<th>Företag</th>
<th>Bransch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweco</td>
<td>Konsult, diversifierad</td>
</tr>
<tr>
<td>AFRY</td>
<td>Konsult, diversifierad</td>
</tr>
<tr>
<td>COWI</td>
<td>Konsult, diversifierad</td>
</tr>
<tr>
<td>Assemblin</td>
<td>Elinstallationer</td>
</tr>
<tr>
<td>Collectum</td>
<td>Pensioner</td>
</tr>
</tbody>
</table>
Tabell 2c. Svenska leverantörer med leveranser mellan 50 och 100 miljoner kronor till ESS 2018–2020

<table>
<thead>
<tr>
<th>Företag</th>
<th>Bransch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uppsala Universitet</td>
<td>Universitet</td>
</tr>
<tr>
<td>Adapteo</td>
<td>Uthyrning av byggmaskiner</td>
</tr>
<tr>
<td>Tyréns</td>
<td>Konsult, bygg</td>
</tr>
<tr>
<td>WSP</td>
<td>Konsult, bygg</td>
</tr>
<tr>
<td>Scanscot Technology</td>
<td>Konsult, bygg</td>
</tr>
<tr>
<td>Actemium</td>
<td>Installation av utrustning</td>
</tr>
<tr>
<td>Netgroup Energy Sweden</td>
<td>Konsult, industri</td>
</tr>
<tr>
<td>Power Heat Piping South</td>
<td>Konsult, installation</td>
</tr>
</tbody>
</table>

Tabell 2d. Svenska leverantörer med leveranser mellan 25 och 50 miljoner kronor till ESS 2018–2020

<table>
<thead>
<tr>
<th>Företag</th>
<th>Bransch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combitech</td>
<td>Konsult, data</td>
</tr>
<tr>
<td>Atea Sverige</td>
<td>Konsult, data</td>
</tr>
<tr>
<td>Fagerström Industriks</td>
<td>Konsult, industri</td>
</tr>
<tr>
<td>Kraftringen Nät</td>
<td>Eldistribution</td>
</tr>
<tr>
<td>Coromatic</td>
<td>Konsult, industri</td>
</tr>
<tr>
<td>Svensk Kärnbränslehantering</td>
<td>Konsult, avfallshantering</td>
</tr>
<tr>
<td>EC Konsult</td>
<td>Dataprogrammering</td>
</tr>
<tr>
<td>Elajo Mekanik</td>
<td>Metallvaror, installation</td>
</tr>
<tr>
<td>Sigma</td>
<td>Konsult, data</td>
</tr>
<tr>
<td>VA SYD</td>
<td>Vatten, avlopp, avfallshantering</td>
</tr>
</tbody>
</table>
Fjorton av de 24 bolagen levererade konsulttjänster, i de allra flesta fall i direkt samarbete med Skanska. Endast Assemblin, Actemium och Elajo Mekanik kan sägas tillhöra den klassiska industri-sektorn, men de har naturligtvis också varit involverade i bygprocessten tillsammans med Skanska. Bland de andra stora leverantörerna kan nämnas Collectum, som hanterar tjänstepensioner, Kraft- ringen, som svarar för eldistribution, VA SYD, som är ett kommunalt vatten-, avlopp- och avfallshanteringsföretag, och Adapteo, som hyr ut byggmaskiner. Denna uppsättning av företag skiljer sig tydligt från de urval som funnits med i tidigare analyser av de ekonomiska effekterna av Big Science-anläggningar.

4.5 Slutsatser

Fyra viktiga observationer från beskrivningen av ESS leverantörer bör betonas. För det första framgår det tydligt att svenska företag har lyckats få en stor del av de kontrakt som ESS upphandlat utöver in-kind avtalen. Sammantaget har svenska företag levererat till ett betydligt större värde än de svenska kontantinsatserna i ESS.

För det andra domineras de svenska insatserna av Skanska, som har haft ansvaret som huvudentrepenör i bygget av ESS. Detta innebär också att en stor del av de samhällesekonomiska effekterna av de svenska investeringarna i ESS fram till nu beror på vilka multiplicatoreffekter som genererats av Skanska och hur Skanska påverkats av samarbetet med ESS. Tidigare studier av Big Science-anläggningar ger inte mycket stöd för analysen av dessa effekter, eftersom de inte haft lika stor betoning på bygg- och anläggningsarbeten som på utveckling av avancerade instrument och annan utrustning. En tredje observation är att stora konsultföretag haft en central roll bland ESS leverantörer. Denna typ av företag har heller inte varit i fokus i tidigare analyser. För att få en bild av vilken betydelse uppdragen för ESS haft för Skanska och de stora konsulthusen har en serie intervjuer genomförts. Resultaten av dessa sammanfattas i följande avsnitt.

Samtidigt omfattar listan av svenska leverantörer ett stort antal företag som till sin natur inte skiljer sig tydligt från dem som undersöks i andra studier av Big Science-anläggningarnas effekter. För denna breda grupp av företag finns det inte stor osäkerhet kring de potentiella effekterna av framtida samarbeten med ESS, som genomförs då anläggningen väl tagits i drift och den löpande forskningsverksamheten kommit igång. Däremot är det oklart hur deras verksamhet och konkurrenskraft har påverkats av leveranserna under uppbyggnadsfasen. För att belysa detta har en enkät genomförts riktad till små och medelstora leverantörer. Resultaten av denna presenteras i avsnitt 6.
5 Effekter för Skanska och de stora konsulthuserna

Skanska har under åren 2015–2020 varit den i särklass största leverantören till ESS. Företagets samlade fakturering under perioden uppgick till omkring 4,6 miljarder kronor (exklusive moms), vilket motsvarade 35 procent av ESS totala kostnader och över 60 procent av vårdet av leveranser till svenska företag. Som ovan diskuteras har för byggnationen också anlitats en rad skilda konsultföretag, däribland de stora konsulthuserna Sweco, AFRY och COWI. Intervjuer med representanter för såväl Skanska och konsulthuserna som avdelningen Conventional Facilities på ESS ger en bild av vilken betydelse – förutom de rent intäktmässiga – uppdragen för ESS haft för de inblandade företagen.

Typ av collaborative construction har under längre tid tillämpats med stor framgång, till exempel i Storbritannien. I Sverige är samverkansavtal vanliga i mindre projekt i kommuner och privat, men de är relativt ovanliga i stora infrastrukturprojekt. I intervjuerna med de inblandade partnerna framhävts implementeringen av en sådan samverkan, främst mellan Skanska och ESS men också omfattande de inblandade konsulthusen, som en väsentlig framgångsfaktor. Viktiga förutsättningar var att ESS redan från början byggt upp en stark och kompetent beställarorganisation och att det på Skanska fanns erfarenhet av denna typ av samverkan.

Både av praktiska och ekonomiska skäl och för att undvika negativ publicitet var det en hög prioritet att så långt som möjligt förhindra förseningar och därmed följande budgetöverskridningar. Vad gäller den byggnadsnässiga infrastrukturen har detta trots pandemins följdverkningar lyckats. Etablerandet av omfattande och systematiska riskhanteringssystem har här varit av betydelse. Genom att på ett tidigt stadium identifiera potentiella risker har effekterna av oväldena bakslag minimerats eller helt undvikits.

Implementeringen av ett så stort och komplext projekt under medverkan av så många partner ställer osedvanliga krav på koordinering och avstämning. Även om enskilda arbetsuppgifter och uppdrag så långt möjligt modulariseras är det i regel omöjligt att hålla gränsnitten dem emellan konstanta. Förutom den samverkanskultur som etablerades var också upprättandet av organisatoriska rutiner nödvändiga för att säkerställa ett effektivt informationsutbyte. Grunden för detta var den disciplinerade implementeringen av system för detaljerad dokumentation och gemensamma rutiner för dokumenthantering.

Uppbyggnaden av ESS infrastruktur innebar höga krav på de inblandade företagen och för ESS beställarorganisation CF. Till stor del kunde man bygga på etablerade rutiner och förmågor, men dessa måste i flera fall stärkas och vidareutvecklas med potentiellt positiva effekter på företagens långsiktiga konkurrenkskraft. Systematiskt och effektivt utnyttjande av nya kompetenser försvåras dock av att erfarenheterna är svåra att kodifiera och organisatoriskt fasthålla. De är i regel knutna till enskilda individer och arbetsgrupper, som efter projektets färdigställande kommer att sysselsättas i andra projekt och nya konstellationer. Vunna erfarenheter och insikter kan kanske även fortsättningsvis komma organisationen till godo, men systematiska positiva effekter är svåra att realisera.

Arbete för anläggningar som ESS är förknippat med betydande prestige. För enskilda medarbetare representerar erfarenheter från det framgångsrika bygghandet en viktig merit. Också på företagsnivå kan ESS tjäna som referensprojekt med visst marknadsföringsvärde. Potentiellt skulle erfarenheter från bygget av en stor forskningsanläggning också kunna tjäna som ingång till medverkan i liknande projekt i andra länder, men detta förefaller med något undantag inte ha varit fallet så här långt. Dessa typer av projekt är inte så regelbundna att de representerar en strategiskt attraktiv marknad värd att utveckla speciella resurser och färdigheter för. Om tillfälle erbjuds kan man visserligen tänka sig att opportunistiskt engagera sig i attraktiva projekt, men
detta försvåras av att sådana engagemang ofta är förenade med oacceptabelt hög risk, särskilt i länder där man inte tidigare har en stark lokal organisation.

Sammanfattningsvis förefaller det som om Skanska och de stora konsulthusen i huvudsak profiterat finansiellt genom uppdragen för ESS. Vare sig tekniska utmaningar eller organisatoriska erfarenheter har haft påtagliga effekter på deras konkurrenskraft. Investeringsar i den fysiska infrastrukturen, som svarar för den helt dominerande delen av de totala investeringarna under uppbryggnadsfasen, har varit förknippade med betydande lokala och nationella multiplikatoreffekter med positiva effekter på inkomster och sysselsättning. Men minst hälften, och kanske väsentligt mer, av betalningsströmmarna har inte stannat i Sverige utan har istället genererat positiva effekter utomlands.
6 Effekter för mindre och medelstora leverantörer

Som ett led i analysen av de samhällsekonomiska effekterna av Sveriges investeringar i ESS har en enkätundersökning riktats till svenska företag med leveranser till anläggningen under åren 2018–2020. Huvudsyftet var att erhålla en mer detaljerad bild av leveransernas karaktär. En viktig fråga härvidlag är i vilken utsträckning leveranserna avsett produkter och tjänster, som utvecklats för att möta krav och prestanda man inte tidigare mött, och till vilken del de varit standardleveranser utan särskild kundanpassning. Skillnaden kan väntas ha betydelse för huruvida de svenska företagen gynnsats av positiva spillovereffekter av den typ som observerats i tidigare studier. Som diskuterats ovan (avsnitt 3 c) täcker dessa ett brett spektrum innefattande teknikutveckling och innovationer, försäljningsställväxt, stärkt renommé och konkurrenskraft, men också ökad tillfredsställelse och motivation hos de anställda. Ett viktigt syfte med enkäten var att skapa ett underlag för att bedöma förekomsten och storleksordningen av sådana effekter. Dessa är svåra eller omöjliga att uppskatta enbart på grundval av aggregerade data men kan väntas vara av betydelse för den totala samhällsekonomiska nyttan, framför allt med hänsyn till möjliga framtida uppdrag.

Enkäten genomfördes med stöd av Big Science Sweden (BiSS) under oktober 2021.

6.1 Urval

Denna slagsida måste beaktas i tolkningen av resultaten. Ett större och bredare urval av leverantörer hade med stor sannolikhet visat mindre positiva effekter.
De företag som ingår i det analyserade materialet svarar dock för en rätt avsevärd andel av såväl företag som totala leveransvärden (Tabell 3a och 3b).

Tabell 3a Svenska ESS-leveranser 2018-2020

<table>
<thead>
<tr>
<th>Företagsstorlek</th>
<th>Antal leverantörer</th>
<th>Leveranser (TSEK)</th>
<th>Andel i %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanska</td>
<td>1</td>
<td>3 598 016</td>
<td>55,7</td>
</tr>
<tr>
<td>100–150 MSEK</td>
<td>5</td>
<td>607 429</td>
<td>9,4</td>
</tr>
<tr>
<td>10–99 MSEK</td>
<td>50</td>
<td>1 577 846</td>
<td>24,4</td>
</tr>
<tr>
<td>3–9,9 MSEK</td>
<td>61</td>
<td>359 019</td>
<td>5,6</td>
</tr>
<tr>
<td>< 3 MSEK</td>
<td>1 168</td>
<td>314 330</td>
<td>4,9</td>
</tr>
<tr>
<td>Summa</td>
<td>1 281</td>
<td>6 456 640</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell 3b Enkätrval

<table>
<thead>
<tr>
<th>Företagsstorlek</th>
<th>Antal företag</th>
<th>Samlade leveranser (TSEK)</th>
<th>Andel företag i % av totalen i storleksgruppen</th>
<th>Andel leveransvärde i % av totalen i storleksgruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–150 MSEK</td>
<td>1</td>
<td>120 234</td>
<td>20,0</td>
<td>19,8</td>
</tr>
<tr>
<td>10–99 MSEK</td>
<td>20</td>
<td>566 411</td>
<td>40,0</td>
<td>35,9</td>
</tr>
<tr>
<td>3–9,9 MSEK</td>
<td>27</td>
<td>181 155</td>
<td>44,3</td>
<td>50,4</td>
</tr>
<tr>
<td>< 3 MSEK</td>
<td>24</td>
<td>9 497</td>
<td>2,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Summa</td>
<td>72</td>
<td>877 297</td>
<td>13,5*)</td>
<td></td>
</tr>
</tbody>
</table>

*) Exklusive Skanska 30,7 %

För gruppen leverantörer med uppdrag mellan 3–10 miljoner kronor svarar enkätföretagen för hälften av det totala leveransvärdet, vilket också omfattar leveranser från universitet och andra företag som inte omfattats av undersökningen. Men som tabellen också visar svarar de 24 företagen med leveranser understigande 3 miljoner kronor bara för en bråkdel av de mindre leveranserna till anläggningen.

Nästan hälften av enkätföretagen utgörs av tekniska konsulter (18) och företag med tillverkning av maskiner, utrustning, mätverktyg, osv. (18). Tillsammans svarar dessa för drygt en tredjedel av enkätföretagens samlade leveranser. Fem installatörs av VVS, ventilation, osv. svarar för ytterligare 27 procent av
leveransvärdet, medan resten fördelas mellan andra branscher (Tabell 4). Omkring en femtedel av enkätföretagen, svarande för drygt hälften av leveransvärdet, har levererat tjänster av olika slag, inkluderande väg- och vattenbyggnad, byggnation samt tekniska och andra tjänster.

Tabell 4 Enkätföretag - branschfördelning

<table>
<thead>
<tr>
<th>Bransch</th>
<th>Antal företag</th>
<th>Leveranser (TSEK)</th>
<th>Andel i %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygg och anläggningsverksamhet</td>
<td>3</td>
<td>70 946</td>
<td>8,1</td>
</tr>
<tr>
<td>Installation av el, VVS, ventilation, osv.</td>
<td>5</td>
<td>236 537</td>
<td>27,0</td>
</tr>
<tr>
<td>Fastighetsskötsel, bevakning, städ, osv.</td>
<td>1</td>
<td>13 950</td>
<td>1,6</td>
</tr>
<tr>
<td>Tillverkning av maskiner, utrustning, mätverktyg, osv.</td>
<td>17</td>
<td>93 591</td>
<td>10,7</td>
</tr>
<tr>
<td>Partihandel med maskiner, utrustning, verktyg, osv.</td>
<td>4</td>
<td>32 939</td>
<td>3,8</td>
</tr>
<tr>
<td>Tekniska konsulter</td>
<td>18</td>
<td>216 123</td>
<td>24,6</td>
</tr>
<tr>
<td>Datakonsulter, programvara</td>
<td>6</td>
<td>38 573</td>
<td>4,4</td>
</tr>
<tr>
<td>Annan konsultverksamhet</td>
<td>3</td>
<td>14 164</td>
<td>1,6</td>
</tr>
<tr>
<td>Forskning och utbildning</td>
<td>1</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>Finans, försäkring, revision, osv.</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Transporter</td>
<td>1</td>
<td>45 985</td>
<td>5,2</td>
</tr>
<tr>
<td>Offentlig sektor, myndigheter</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Övrigt</td>
<td>13</td>
<td>114 431</td>
<td>13,0</td>
</tr>
<tr>
<td>Summa</td>
<td>72</td>
<td>877 297</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Två tredjedelar av företagen i enkäten är självständiga bolag eller dotterbolag till svenska koncerner, en tredjedel är utlandsägda dotterbolag. Den senare gruppen innefattar såväl dotterbolag med stor industriell och annan verksamhet i Sverige som mindre försäljningsbolag med huvudsaklig förmedlande funktion, där man kan anta att eventuellt mervärde av ESS-kontrakten främst kommit utländska enheter tillgodo.
6.2 Resultat

I enkäten ombads företagen att i fem dimensioner på en skala mellan 1–5 ange karaktären av deras huvudsakliga leveranser till ESS, med avseende på graden av kundanpassning och utvecklingsarbete å ena sidan och till vilken del levererade produkter och tjänster var av standardkaraktär å den andra. Med hjälp av statistisk klusteranalys kunde leveranserna signifikant fördelas i två grupper (Tabell 5).

Företag i Grupp 1 kännetecknas av att deras leveranser huvudsakligen varit av standardkaraktär med endast ringa krav på kundanpassning och utvecklingsarbete. I kontrast till dessa har leveranserna i Grupp 2 i väsentlig omfattning inkluderat nyutveckling och anpassning till nya och speciella krav.

Tabell 5. Enkätföretag – klusterklassificering efter huvudsaklig leveranstyp)
*) Genomsnitt hur väl beskrivningen överensstämmer med företagets leveranser till ESS, där 1 motsvarar inte alls och 5 motsvarar fullständigt.

<table>
<thead>
<tr>
<th>Kluster</th>
<th>Standardleverans</th>
<th>FoU och kundanpassning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samordning och systemintegration</td>
<td>2,7</td>
<td>2,8</td>
</tr>
<tr>
<td>Skräddarsydda produkter och tjänster med betydande teknologiskt utvecklingsarbete</td>
<td>2,1</td>
<td>4,6</td>
</tr>
<tr>
<td>Huvudsakliga standardprodukter och -tjänster med viss kundanpassning</td>
<td>3,6</td>
<td>2,5</td>
</tr>
<tr>
<td>Avancerade produkter och tjänster innebärande krävande nyutveckling i samarbete med ESS</td>
<td>2,7</td>
<td>3,6</td>
</tr>
<tr>
<td>Avancerade produkter och tjänster innebärande krävande nyutveckling i samarbete med universitet och andra forskningsinstitutioner</td>
<td>1,2</td>
<td>3,2</td>
</tr>
<tr>
<td>Rena standardprodukter och -tjänster</td>
<td>3,9</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Drygt hälften av det samlade leveransvärdet i enkätföretagen utgörs av standardleveranser, och omkring en fjärde del av uppdrag innefattande FoU och kundanpassning (Tabell 6). Det skall dock noteras att drygt en femtedel av de svarande företagen inte kunnat klassificeras på grund av ofullständigt ifyllda enkäter.
Tabell 6. Enkätföretag – fördelning efter leveranstyp

<table>
<thead>
<tr>
<th>Huvudsaklig leveranstyp</th>
<th>Antal</th>
<th>Samlade leveranser (TSEK)</th>
<th>Andel i %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardleveranser</td>
<td>33</td>
<td>478 118</td>
<td>54,5</td>
</tr>
<tr>
<td>FoU och kundanpassning</td>
<td>22</td>
<td>206 852</td>
<td>23,6</td>
</tr>
<tr>
<td>Ej klassificerade</td>
<td>17</td>
<td>192 327</td>
<td>21,9</td>
</tr>
<tr>
<td>Summa</td>
<td>72</td>
<td>877 297</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Något förvånande är skillnaden mellan de båda grupperna inte särdeles markant då det gäller i vilken utsträckning uppdrag till ESS upplevs ha bidragit till företagens konkurrenskraft (Figur 9). För båda grupperna gäller att uppdragen främst stärkt företagets rykte och varumärke och haft positiva effekter på medarbetarnas tillfredsställelse. Båda dessa effekter sammanhänger med den prestige som förknippas med arbete för avancerade och kravställande kunder och är i linje med resultat från tidigare studier (Florio et al., 2018). Företag med kundanpassning och FoU rapporterar signifikant starkare positiva effekter då det gäller förbättrade kontakter till universitet och internationella nätverk, men – liksom i övriga dimensioner – är effekterna endast måttliga.

Figur 9. Konkurrenskraftseffekter
En likartad bild gäller uppskattningarna av effekterna på företagens innovationsförmåga (Figur 10), där mer än hälften av de svarande uppgivit att leveranserna till ESS inte haft någon sådan effekt. Endast en mindre andel anger att uppdragen lett till lansering av nya eller förbättringar av existerande produkter och tjänster.

Figur 10. Effekter på nyutveckling och innovationsförmåga

Har uppdrag för ESS lett till förbättrad innovationsförmåga?

<table>
<thead>
<tr>
<th>Effekt</th>
<th>Antal företag (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lansering av nya produkter och tjänster</td>
<td></td>
</tr>
<tr>
<td>Förbättringar (icke patentade) av existerande produkter och tjänster</td>
<td></td>
</tr>
<tr>
<td>Förbättrade FoU-processer</td>
<td></td>
</tr>
<tr>
<td>Nya patent och patentansökningar</td>
<td></td>
</tr>
<tr>
<td>Nya licencavtal</td>
<td></td>
</tr>
<tr>
<td>Etablering av spin-off företag</td>
<td></td>
</tr>
<tr>
<td>Övrigt</td>
<td></td>
</tr>
</tbody>
</table>

Antal företag (n=60)

Enkätsvaren ger vid handen att svenska företags leveranser under upphyrnadsfasen endast i begränsad utsträckning varit förknippade med positiva spillovereffekter. Samtidigt uppger företagen att de nästan inte alls upplevt några av de nackdelar som i litteraturen framförts som vanliga i samband med leveranser till forskningsinfrastrukturanläggningar (Figur 11).

Figur 11. Upplevda nackdelar

I vilken mån har uppdrag för ESS medförts nackdelar för företaget?

<table>
<thead>
<tr>
<th>Nackdel</th>
<th>Antal företag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fördrat offertarbete</td>
<td></td>
</tr>
<tr>
<td>Kapacitetsbrist för utförande av andra affärer</td>
<td></td>
</tr>
<tr>
<td>Ökade finansiella risker</td>
<td></td>
</tr>
<tr>
<td>Förlust av know-how till samarbetspartner</td>
<td></td>
</tr>
</tbody>
</table>

1 = inte alls; 5 = i mycket stor mån
6.3 Slutsatser

De undersökt företagens erfarenheter skiljer sig påtagligt från dem som framkommit i tidigare analyser av upphandling vid andra forskningsanläggningar, där särskilt CERN blivit föremål för många studier (Autio, 2014; Autio, et al., 1996; Vuola & Hameri, 2006; Castelnovo et al., 2018). Dessa har i regel funnit att många leveranser till anläggningarna varit förknippade med avsevärda tekniska och kommersiella utmaningar, vilka lett till utveckling av nya produkter och tjänster, liksom till förbättrade interna rutiner, vilket i sin tur stärkt företagens konkurrenckraft och innovationsförmåga (se avsnitt 3 c). ESS upphandling från svenska leverantörer har endast i begränsad mån varit förenad med sådana effekter, vilket måste tillskrivas karaktären av de uppdrag svenska företag fått. Dessa avspeglar dels att ESS ännu befinner sig under uppbyggnad, dels att den överväldigande delen av den tekniska utrustning som beställts utvecklats i form av in-kind insatser från forskningsinstitut och konsortier i utlandet. De svenska leveranserna har under den undersökta tidsperioden avsett produkter och tjänster som varit nödvändiga för att fördjupas den fysiska infrastrukturen, och där geografisk närhet till ESS varit av betydelse. Leveranserna har i många fall också varit förknippade med stora tekniska och logistiska utmaningar, men har endast sällan erbjudit de möjligheter till nyutveckling och innovation som iakttagits i studier av leveranser av teknisk utrustning till infrastrukturuppsättningar under pågående drift.
Föregående avsnitt har kommit fram till att leveranserna till ESS varit viktiga både för Skanska som haft ansvarg för en stor del av bygghuset, de stora konsulhusen som bidragit med expertis för design, utveckling och planering av bygget, och många av de mindre och medelstora företag som deltagit som leverantörer till anläggningen. Samtidigt har vi noterat att de dynamiska effekter som betonats i analyser av andra stora forskningsanläggningar som CERN inte varit lika framträdande under den period av ESS konstruktionsfas som vi undersökt. Arbetet med ESS har medfört betydande tekniska och organisatoriska utmaningar för Skanska och de stora konsulhusen, men projektet verkar inte ha haft genomgripande effekter på deras konkurrenskraft och marknadsposition. De mindre och medelstora företagen har i viss utsträckning varit tvungna att utveckla nya tekniska lösningar för att kunna hantera de strikta krav som ställts av ESS, och en del av dem har därigenom kunnat förbättrad sin konkurrenskraft och innovationsförmåga, men dessa spillovereffekter har generellt varit relativt svaga.

Med detta sagt är det ändå viktigt att betona att de samhällsekonomiska effekterna under byggfasen varit betydande. Leveranserna av varor och tjänster till ESS har som ett resultat av multiplikatoreffekter skapat många arbetstillfällen i leverantörsföretagen, och resulterat i ännu fler jobb bland underleverantörer och på andra håll i ekonomin. Det är nästan omöjligt att sätta en exakt siffra på hur stor denna samhällsekonomiska effekt varit, eftersom det saknas data på hur företagens sysselsättning förändrats som ett resultat av kontrakten med ESS, hur underleverantörerna påverkats, och de inkomster som genererats av försäljningen till ESS spenderats. Mycket annat har hänt under ESS konstruktionsfas, och det är i regel omöjligt att precisera vilka förändringar i ett företags verksamhet som kan härledas till relationen med ESS. Dessutom är det oklart i vilken utsträckning satsningarna på ESS trängt undan verksamhet som annars skulle ha genomförts. Detta gäller både de företag som levererat till ESS och staten som finansierat ESS. Har företagens verksamhet expanderat eller har de omfördelat resurser från andra kunder till ESS? Har de offentliga medel som staten satsat på ESS ökat den allmänna efterfrågan eller har de (i större eller mindre omfattning) tagits från alternativa användningsområden, där de också

skulle ha kunnat skapa arbetstillfällen? Denna typ av frågor begränsar precisionen i nästan alla utvärderingar av investeringar, reformer och andra typer av förändringar: det är omöjligt att veta hur verkligheten utan den specifika satsning som diskuteras skulle ha sett ut.

Lösningen är oftast att titta på det hypotetiska fall där endast det som ligger i fokus för analysen förändras medan allt annat hålls konstant (ceteris paribus). Detta skapar en måttstock som visar hur stora olika effekter är under strikta antaganden om att inget oförutsett händer. Vår sammanfattning av de samhällsekonomiska effekterna av investeringarna i ESS fram till 2020 har denna karaktär. I diskussionen nedan kan vi illustrera effekterna under ett ceteris paribus antagande, men vi kommer inte att kunna jämföra utfallet med vad som hade hänt i de kontrafaktiska fallen att statliga medel använts till andra syften, eller att Skanska och andra svenska företag hittat andra stora kunder att arbeta med.

EU:s allmän-jämviktsmodell BIOSAM kan användas för att illustrera storleken på de effekter vi är intresserade av.10 Den efterfrågan som skapats under bygget av ESS är i princip jämförbar med en motsvarande ökning av exporten från EU till tredje land. BIOSAM gör det möjligt att beräkna den totala sysselsättningseffekten av sådana exportökningar (på sektornivå) för EU som helhet och för enskilda EU-länder.

För EU som helhet har dessa effekter av investeringarna i ESS varit betydande. Om de sammanlagda utbetalningarna från ESS under perioden 2010–2020 – som uppgått till 1 569 miljoner euro – endast hänförs till byggsektorn är resultat på EU-nivå en ökning av antalet årsarbetsstillfällen med omkring 36 000. Om utbetalningarna fördelas så att hälften klasses som byggverksamhet medan kategorierna ”affärsstämmer”, ”elektronisk utrustning”, ”maskinindustri”, ”handel” och ”offentlig förvaltning, försvar, utbildning, sjukvård” vardera står för tio procent av leveranserna blir resultatet omkring 37 000 årsarbetsstillfällen.

Ser vi enbart på den svenska arbetsmarknaden blir effekterna naturligtvis mindre. Även om svenska företag står för en stor del av leveranserna till ESS har ungefär en tredjedel av kontrakten gått direkt till utländska leverantörer. Av de kontrakt som Skanska formellt står för har stora delar dessutom genomförts av utländska underleverantörer – denna andel uppskattas av Skanska till mellan hälften och två tredjedelar av den totala kontrakttsumman. Vidare finns det ett omfattande importinnehåll även i de leveranser som faktiskt genomförts av svenska företag. När importinnehållet är stort skapas inte lika många jobb i hemlandet, utan expansionen sker i stället på den utländska marknaden. Läckaget i form av import är större för ett litet land som Sverige än för EU som helhet.

11 Även om uppmot två tredjedelar av Skanskas kontrakt gått direkt till utländska underleverantörer har mycket av arbetet (installation, armering, gjutning) genomförts i Sverige. Detta innebär att en del svenska insatsvaror ingår i den verksamhet som genomförs av utländska underleverantörer, och även att en del av arbetsinkomsterna har skapat efterfrågan i den svenska ekonomin. Vi har därför valt att göra beräkningen enligt den nedre gränsen för Skansa uppskattning.

12 De implicita jobbmultiplikatorerna i BIOSAM för högt betalda tjänsteyrkenn (till exempel försäkring och finans) och avancerad tillverkningsindustri (motorfordon, maskinindustri, elektronisk utrustning) är relativt höga, mellan fyra och sex, medan den offentliga sektorn (statsförvaltning, försvar, utbildning, sjukvård) ligger betydligt lägre, på knappt två. Sektor "avancerad forskning" ingår inte bland de sektorer som identifieras i BIOSAM, vilket gör det svårt att placera ESS på denna skala. För att inte overskatta effekterna har vi valt att klassa ESS på samma nivå offentliga tjänster, med en jobbmultiplikator på två. Detta innebär att ett årsarbetstillfälle på ESS endast skapar ytterligare ett årsarbetstillfälle i andra delar av den svenska ekonomin.
på omkring 1 000 årsarbetsstillfällen. Under antagandet att ett jobb på ESS AB skapade ett jobb utanför anläggningen tillkommer ytterligare 1 000 årsarbetsstillfällen. Vår skattning av den sammanlagda sysselsättningseffekten under perioden 2010–2015 är således 3 670 (1 670 + 1 000 + 1 000) årsarbetsplatser.

Detta inkluderar inte effekterna av svenska insatser för att förbättra existerande och utveckla nya instrument, eller de effekter som kan förväntas när forskningen vid anläggningen så småningom bidrar till nya vetenskapliga rön och innovationer. Som värdland är Sverige väl positionerat, men det bör betonas att de potentiella vinsterna inte på något sätt är automatiska. Det krävs att svenska universitet och forskningsinstitut kan vara med och arbeta aktivt inom de forskningsområden som ESS stödjer, att den kunskap som skapas på ESS förmedlas till det svenska näringslivet, och att akademien och näringslivet tillsammans kan utnyttja kunskaperna för innovationer och stärkt nationell konkurrenskraft. Med andra ord krävs ett livskraftigt ekosystem kring ESS. Det följande avsnittet ger en överblick av hur svenska universitet och forskningsinstitut är positionerade för att kunna bidra till att realisera de potentiella vinsterna av att ESS finns i Sverige, följt av en diskussion av och hur ett velfungerande ekosystem kring ESS kan förväntas sprida de positiva effekterna till övriga delar av den svenska samhällsekonomin.

8 Hur väl förberedda är svenska universitet och forskningsinstitut?

Detta avsnitt ger en kort överblick av hur svenska universitet och forskningsinstitut påverkats av ESS medan nästa avsnitt ser på vilka förutsättningar det i dagsläget finns för att utveckla den typ av ekosystem som är nödvändiga för att ESS ska generera högsta möjliga samhällsnytta för Sverige. Syftet här är inte att skatta de samhällsekonomiska nyttorna av universitetens relationer med ESS. Även om ESS genererat omfattande forskningsinsatser redan innan den reguljära driften inletts är det ännu inte möjligt att beräkna hur den forskning som genomförts har påverkat svensk ekonomi. En orsak är att det i regel finns ett betydande tidsavstånd mellan publicering av resultat från grundforskning och dess eventuella tillämpningar. En annan orsak är avsaknaden av systematisk och lättillgänglig information om vilka projekt och publikationer som är relaterade till ESS.
8.1 Det svenska forskarsamfundets intresse i ESS

En viktig del av Allan Larssons uppdrag som utredare var att undersöka intresset för ett svenskt värdschap för ESS bland svenska forskare och universitet. Utredningens slutsats var tydlig: intresset och engagemanget för ESS var starkt, och konsortiet ESS Scandinavia hade spelat en avgörande roll för de svenska planerna. Projektet kunde ses som ett uttryck för forskarsamfundets behov och efterfrågan. Idag är intresset för och engagemanget i ESS fortfarande starkt bland landets forskare, och de stora universiteten har gjort betydande satsningar för att kunna tillvarata de möjligheter som kommer att öppnas upp då ESS tas i drift. Betydande ESS-relaterade forskningsprojekt har redan genomförts, och universiteten har i flera fall bidragit till konstruktionen av viktiga anläggningskomponenter.

Tidsaspekten har också varit en stor utmaning för universiteten. Med en förväntad byggtid på minst 15 år från första spadtag till reguljär drift (2010–2025) har det varit en svår uppgift att behålla den kompetens som fanns bland svenska forskare i början av 2000-talet, och som starkt bidrog till att anläggningen hamnade i Sverige. Få av de ledande forskare som deltog i
utarbetandet av ESS Scandinavias förslag att lokalisera ESS i Lund kommer att delta i experimenten under driftsfasen. Den svenska modellen för forskningsfinansiering har sällan tillåtit så långa projektpérioder att unga lovande forskare kunnat satsa långsiktigt under många år på att bygga upp exakt de kompetenser som kommer att efterfrågas när ESS tas i drift. Det har heller inte alltid varit möjligt att erbjuda attraktiva anställningar till nydisputerade forskare inom de relevanta ämnedområdena. Att universiteten haft en lång tid på sig för att förbereda sig inför ESS har således inte endast varit en välsignelse. En nyckelfråga är hur dessa problem och utmaningar påverkat universitetens respons och reaktioner till bygget av ESS.

8.2 Lunds universitet

Universitetet har lagt stor vikt vid relationerna till anläggningen. Den geografiska närheten har gjort det möjligt att etablera starka informella samarbeten mellan individer och forskargrupper. Många av medarbetarna vid ESS är adjungerade till Lunds universitet och deltar i den akademiska verksamheten med forskning, utbildning och handledning. Flera av universitetets forskningsprojekt har fokuserat på frågor kring anläggningens konstruktion och instrumentering, ofta i samarbete med ESS och ibland med direkt finansiering från ESS. Vissa av dessa projekt kan liknas med mindre in-kind projekt även om de inte räknas som svenska bidrag. Ett exempel är insatser för att mäta, styra och kontrollera strålen från acceleratorn med hjälp av radiofrekventa vågor – low level RF. Big Science Sweden, som för statistik över svenska forskningsinstitutioners leveranser till de stora internationella forskningsinfrastrukturutbyggnaderna, identifierar sammanlagt 12 projekt där Lunds universitet genomfört ESS-finansierte forskningsinsatser.14 Det finns också fall där forskare från Lund och ESS gemensamt sökt (och erhållit) extern finansiering för specifika projekt.

Eftersom universitetets forskningsdatabas endast identifierar projekten och publiceringar där ESS varit en direkt partner (men inte de projekt där andra relationer till ESS motiverat forskningen) är det svårt att skapa en heltäckande bild av de forskningsinsatser som på olika sätt kan kopplas till ESS. En nedre

14 https://www.bigsciencesweden.se/the-swedish-guide/academic-contributions/
gräns kan ges av sökningar på termer som "spallation" och "neutron" i Lunds universitets forskningsportal. För sökordet "spallation" är resultatet 29 projekt och 311 forskningspublikationer (tidskriftsartiklar, konferensbidrag, böcker, rapporter och doktorsavhandlingar), varav 15 forskningsprojekt och 136 publikationer formellt identifierar ESS som samarbetspartner. För sökordet "neutron" visas 40 projekt och 1 542 forskningspublikationer, med ESS som formell samarbetspartner i 6 projekt och 75 publikationer. Det verkliga antalet projekt och publikationer som ligger inom ESS verksamhetsområde och som på ett eller annat sätt kan kopplas till anläggningen är troligen betydligt större. Dessa sökord fängar till exempel inte upp all relevant forskning inom viktiga områden som life science och nanoteknologi, som är strategiskt viktiga forskningsområden för universitetet där ESS kan förväntas bli en källa för ny kunskap. För framtida utvärderingar av ESS driftsfas kommer det att vara av stor vikt att dokumentera och följa upp den akademiska forskning som kan kopplas till anläggningen. Även utan tillgång till detaljerad och precis information är det dock uppenbart att ESS redan har en betydande inverkan på universitetets verksamhet. Detta stärker förutsättningarna för att svenska aktörer också fortsättningsvis kommer att kunna ta del av de möjligheter som uppkommer när ESS går från konstruktionsfasen till driftsfasen.

Ett ytterligare steg som kommer att stärka integrationen med ESS är beslutet att flytta delar av universitetets verksamhet till stadsdelen Brunnshög i nordöstra Lund, där MAX IV och ESS är belägna. I området mellan anläggningarna planeras etablering av en forskarby (Science Village Scandinavia) som man hoppas ska locka till sig andra forskningsinstitut och företag, och möjligtvis också delar av en "tekniparksfunktion", som ska utgöra en länk mellan ESS och externa användare. Avsikten är att forskarbyn ska skapa mötesplatser för akademi, forskning och näringsliv, däribland de tusentals utländska forskare som varje år förväntas besöka ESS.

Som en del i ansträngningarna att sammanföra forskning som utnyttjar de tekniska resurser som ESS (och MAX IV) erbjuder, förmedla forskningsresultaten och utveckla praktiska tillämpningar för industrin har Lunds universitet också varit delaktigt i etableringen av ett antal forskningsprogram och organisationer med starka band till näringslivet. Eftersom några av dessa även omfattar andra universitet diskuteras de i nästa avsnitt.

8.3 Uppsala universitet
Efter inledande tveksamhet deltog också Uppsala universitet aktivt i arbetet med att få ESS till Sverige. Detta var viktigt eftersom Uppsala var särdeles för en stor del av den svenska kompetensen inom acceleratormyndighet. The Svedberg-

laboratoriet med sin synkrocyklotron var den ledande nationella partikelforsknings-anläggningen i Sverige, och en stor del av kompetensen inom instrumentering var också samlad där (även om det fanns andra partikelacceleratorer i Sverige, till exempel MAX-lab i Lund och Manne Siegbahn-laboratoriet vid Stockholms universitet).

Lösningen blev att Uppsala universitet 2013 etablerade en ny anläggning, FREIA-laboratoriet, i syfte att bibehålla och vidareutveckla acceleratorkompetensen i väntan på färdigställandet av ESS. FREIA-laboratoriet arbetar med utveckling av partikelacceleratorer och andra vetenskapliga instrument, och har haft en viktig roll för att testa avancerade acceleratorkomponenter för ESS. Acceleratorn i ESS består av många delar som tillverkats på olika håll i Europa och som innehåller supraleadede komponenter. Dessa måste testas, kvalitetsgranskas och (i viss utsträckning) vidareutvecklas innan slutlig installation kan ske. Eftersom ESS inte själv har kapacitet att genomföra de nödvändiga testerna har detta gjorts på FREIA, med full kostnadsställning från ESS. Under 2021 utgjorde testerna svenska in-kind bidrag till ESS och finansierades från den budget för in-kind bidrag som administreras av Vetenskapsrådet.

FREIA hade fram till slutet av 2021 genomfört tester med full belastning på de 13 stora supraleadede komponenter som ingår i acceleratorn. Återstående kontrakterade tester förväntas bli klara till slutet av 2022. Att testerna varit nödvändiga bekräftas av att upprepade problem med felaktiga specifikationer och bristande prestanda påvisats under arbetet. Testerna för ESS har bidragit till att skapa en spjutspetskompetens som efterfrågas även av andra forskningsanläggningar i Europa – detta kan komma att bidra med inkomster för att finansiera ny spetsforskning vid FREIA. Därutöver har FREIA nytjats för grundforskningen vid universitetet, samarbetsprojekt med andra svenska lärosäten och internationella forskningsanläggningar (såsom CERN och XFEL) och för kommersiella samarbeten med näringslivet.

Finansieringen av FREIA illustrierar den breda mobilisering som var nödvändig för att genomföra projektet. Förutom en betydande egen investering från Uppsala universitet har ESS, den svenska staten och Wallenbergstiftelserna sedan 2013 bidragit till konstruktionen och driften av FREIA till en sammanlagd kostnad av närmare 300 miljoner kronor. Trots den höga kostnaden kan anläggningen karakteriseras som en nödvändig (om än inte tillräcklig) investering för att skapa goda förutsättningar för det svenska forskarsamfundet att generera maximal samhällsnyta av ESS i framtiden.

8.4 Övriga svenska universitet

Förutom universiteten i Lund och Uppsala ingick även Chalmers, KTH och Linköpings universitet bland de svenska deltagarna i det konsortium som utvecklade de ursprungliga planerna för ESS i början av 2000-talet. Forskare från de tre sistnämnda universitetena har också varit engagerade i andra samarbeten med ESS och har byggt kapacitet för att delta i framtida forskningsprojekt som utnyttjar ESS. Chalmers etablerade ett formellt samarbete med ESS 2015 för att säkra permanent närvaro av Chalmersforskare i Lund, i första hand med avsikten att ge nästa generations forskare möjlighet att tillägna sig relevant kompetens i de avancerade metoder för materialvetenskap och nanoteknologi som ESS kommer att möjliggöra. Samarbetet med ESS har också omfattat forskning för att ta fram mjukvara och beräkningsmodeller och för att vidareutveckla instrument vid anläggningen. Vidare har forskare från Chalmers haft framträdande roller i de olika nätverk som är kopplade till ESS. Linköpings universitet har utmärkt sig inom projekt som rör tunnfilmsfysik, neutronoptik och detektorer, med viktiga framtida tillämpningar vid ESS. KTH:s insatser har främst rört materialforskning inom ramarna för den stora Materialplattformen, som omfattar över 1 000 forskare och 80 forskningsgrupper. Plattformen täcker sex tematiska multidisciplinära forskningsområden (polymermaterial, nya material, material för energitillämpningar, hållbara material, tekniska material, och material för informations- och kommunikationsteknik) och har ansvar för att främja KTH:s bruk av avancerad forskningsinfrastruktur som ESS. Dessutom har KTH en viktig roll både i den nationella forskarskolan i neutronspredning och den nordiska forskarskolan i neutronforskning.
Många av de insatser som noterats ovan tangerar varandra och de större projekten omfattar i regel deltagare från flera universitet. Alla de fem universitet som nämnts ovan, plus Stockholm universitet och Malmö universitet, medverkar i minst en av de forskargrupper som med stöd från Vetenskapsrådet arbetar med förstudier i hopp om att få medverka i utvecklingen av två framtida instrument för ESS – SAGA och HIBEAM. De stora universiteten har dessutom omfattande samarbeten med andra europeiska forskningsinfrastrukturer (MAX IV, CERN, ITER, XFEL, ISIS, DESY med flera), vilket bidrar till att skapa beredskap för framtida samarbeten också med ESS. Även mindre universitet är engagerade i forskningsprojekt för ESS. Till exempel har Mittuniversitet och Högskolan Väst arbetat med ESS för att utveckla neutrondetektorer och nya ytskikt för neutronkällan.

SSF finansierar forskarskolans första fas med totalt 220 miljoner kronor, men stiftelsen har annonserat att den inte kommer att finansiera ytterligare doktorandtjänster utöver de 40 som redan finns i planen. Samtidigt har den uttalat en beredskap att delta i finansieringen av framtida kurser om universiteten kan finansiera doktorandtjänsterna på egen hand. Stiftelsen avser också att investera i post doc-program, där deltagarna kan fördjupa sina kunskaper under forskningsvistelser på utländska anläggningar för att därmed vara väl rustade när driften vid ESS startar. Svenska doktorander och post-docs deltar också i den gemensamma nordiska forskarskola i neutronforskning som drivs av Nordforsk, med målet att höja kompetensen inom området, främja samarbeten mellan nordiska forskare och stödja de nordiska ländernas användning av ESS.

Som en summanfattning av universitetens investeringar för att bygga kapacitet och kompetens inför ESS driftsfas kan det konstateras att beredskapen är relativt god. Det finns betydande expertis och ett stort antal forskningsprojekt inom områden som kommer att stärkas ytterligare när ESS tas i drift. Den fysiska flytten av viktiga delar av Lunds universitet till forskarbyn Science Village
Scandinavia i Brunshög skapar möjligheter att etablera ytterligare kontakter, till gagn för informationsutbyte och lärande. Investeringarna i FREIA-laboratoriet har etablerat starka länkar till ESS och förstärkt Uppsala universitets kompetens inom ett antal områden, inklusive avancerad testning av supraleddande komponenter. Chalmers, KTH och Linköpings universitet har positionerat sig inom områden där de har särskilda styrkor, och där ESS kan bidra till att ytterligare förstärkning av deras konkurrenskraft. Dessa och andra svenska universitet deltar i arbetet med att ta fram förslag till nya instrument för ESS. Samtidigt bidrar SwedNess till att en ny generation av unga forskare med relevant spetskompetens kommer att kunna delta på olika sätt i den framtida forskningen vid ESS. Alla dessa observationer är positiva och tyder på att de utmaningar som funnits under de senaste åren inte förhindrat viljan att satsa resurser för att skapa den nödvändiga beredskapen.

9 Ekosystemet mellan universitet och näringsliv

9.1 Aktörer och mediatorer
Även om närheten till ESS och MAX IV erbjuder stora möjligheter för forskare vid Lunds universitet kommer vinsterna av en sådan konkurrensfördel inte att uppkomma automatiskt. Denna insikt har lett universitetet till att starta ett antal program och nätverksinitiativ med syfte att öka integrationen med ESS (och MAX IV) och att stimulera ny forskning som utnyttjar de möjligheter som anläggningen skapar. Ett första steg i denna process är beslutet att etablera forskarbyn Science Village Scandinavia som en ny stadsdel i området mellan ESS och MAX IV. Tillsammans med Region Skåne och Lunds kommun är Lunds universitet en av ägarna till det bolag som utvecklar marken för bebyggelse och säljer byggrättigheterna i den nya stadsdelen. Enligt planen ska stadsdelen omfatta både universitetslokaler, bostäder, forskningsinstitut, företag och tillhörande urbana tjänster. Beslutet att flytta delar av universitetets verksamhet till forskarbyn kan ses som ett andra steg i processen. De delar av universitetet som ska etablera sig i stadsdelen är främst de verksamheter som direkt förväntas använda forskningsinfrastrukturen – delar av medicinska fakulteten, forskningsinstitutet LINXS, centret för vetenskapliga och tekniska beräkningar LUNARC och Lund Nano Lab – men även andra delar av Lunds Tekniska Högskola och Naturvetenskapliga fakulteten kommer att flytta med.

LINXS har goda förutsättningar för att stärka Lunds universitets position i de forskamnätverk som etableras kring ESS och MAX IV, men en stor utmaning är att utveckla verksamheten till en nationell resurs. Det är angeläget att skapa utrymme för andra svenska universitets deltagande i nätverken och spridningen av kunskapen till akademiska miljöer utanför Lund, men det är inte klart hur

Medan de aktörer som diskuterats ovan främst arbetar nedströms från forskningsanläggningarna och främjar användningen av dess resurser har Big Science Sweden en central roll för svenska företags deltagande uppströms, som leverantörer till anläggningarna. Eftersom ESS och andra anläggningar ofta efterfrågar varor och tjänster som bygger på avancerad teknik och kräver skräddarsydda lösningar kan kontrakt med anläggningarna leda till produktutveckling och innovationer hos leverantörerna. I vissa fall utvecklas lösningarna gemensamt av leverantören och anläggningens experter, vilket bidrar till lärande och kunskapsutveckling.17 Big Science Swedens utmaning har varit att identifiera potentiella leverantörer, som ännu inte försökt sälja till anläggningarna och som kanske inte ens är medvetna om att anläggningarna utgör en otnyttjad marknad. Detta har krävt omfattande utåtriktade insatser, med direkta företagskontakter, seminarier och nätverksarrangemang med fokus på särskilda teknologiområden, deltagande i mässor, och andra aktiviteter som skapat intresse bland företagen. Resultaten av verksamheten har synts i form av en ökning av svenska leveranser till flera av de europeiska forskningsanläggningarna, likväl som anläggningar utanför Europa, såsom ESO och SKA.

Samtidigt som Big Science Swedens verksamhet illustrerar de potentiella effekterna av ett aktivt engagemang med näringslivet kan den ses som en indikation på några av begränsningarna i denna typ av uppsökt verksamhet. Det är svårt att verka som kommersiell kunskapsmäklare och ta betalt för tjänster som levereras till kunder som inte vet att de har ett behov av tjänsterna och inte kan bedöma dess värde ex ante (Håkanson et al. 2011). Big Science Sweden har varit framgängsrik eftersom verksamheten varit offentligt finansierad. Samma begränsning gäller troligen för RISE, vilket medför att insatserna för att förmedla kunskap om neutronforskning och dess potentiella

17 Se vidare Håkanson och Kokko (2021).
tillämpningar behöver ingå i institutets offentliga uppdrag och finansieras genom statliga anslag.

9.2 Nationell teknikparksfunktion

Sammanaget tillhandahåller de aktörer som diskuterats ovan många av de funktioner som krävs för att verksamheten vid ESS (och MAX IV) ska kunna bidra till största möjliga samhällsnytta. Förutom att universiteten ska ha den nödvändiga kompetensen för att bidra till avancerad forskning krävs att kunskapen om teknikerna måste nå ut i samhället och näringslivet. Forskningsresultat ska kunna översättas till industriella tillämpningar, tekniken ska vara tillgänglig även företag som saknar egen expertis för att genomföra experiment och tolka resultat, och svenska forskare och företag ska kunna delta i uppradningen av anläggningen och utvecklingen av nya avancerade instrument. För detta krävs arenor för dialog och samarbete – både reellt och virtuellt – och helst också insatser för att attrahera kvalificerade utländska experter och teknologiföretag till Sverige. Dessa behov identifierades redan i Allan Larssons utredning om svenskt värdskap för ESS från 2005 och de återkommer bland annat i Vetenskapsrådets förslag till strategi för svenskt värdskap (Vetenskapsrådet 2016), i den gemensamma rapporten från de olika intressenterna kring ESS och MAX IV (SWEbeams 2018) och i Sveriges nationella strategi för ESS (Regeringen 2018), liksom i kommentarerna till dessa inlägg.

Vinnovas förslag (Vinnova 2020) bygger på den nationella strategin för ESS (Regeringen 2018) och de behov som identifierats av SWEbeams och andra intressenter. De fem breda mål som identifieras är att teknikparksfunktionen skall:

- Stimulera användning av anläggningarna och bidra till ett effektivt nyttjande av resurser och kompetens.
- Skapa en mötesplats som blir internationellt ledande så att såväl svenska som internationella aktörer väljer att förlägga verksamhet i anslutning till anläggningarna.
- Öka kännedom och kunskap om nyttiggörande av anläggningarna och stimulera rörlighet mellan anläggningar-akademi-institut-närliv.
• Stärka innovationskraften genom att stimulera och facilitera samverkan.
• Skapa neutrala mötesplatser som stimulerar kunskapsöverföring och samverkan mellan lärosäten, offentlig verksamhet och näringsliv.

För att uppnå dessa mål föreslår Vinnova att teknikparken ska uppfylla fyra specifika funktioner som alla ska stimulera samverkan och koordination och bidra till att förenkla användarnas tillgång till forskningskompetens, forskningsinfrastruktur och analyskapacitet:

• Servicekontor för industri och användare
• Neutrala plattformar för samverkansforskning
• Kommunikationsinsatser och utbildningsportal
• Stöd till forskningsnära start-ups och småföretag

Tanken är inte att dessa funktioner helt ska centraliseras i Lund, utan att organisationen ska utgå från en teknikpark i Science Village Scandinavia med noder i övriga delar av landet, så att verksamheten kan ta tillvara resurser och kompetens och skapa delaktighet och nytta i hela Sverige.

9.3 Diskussion och rekommendationer

De målsättningar som formuleras av Vinnova har stort stöd bland aktörerna och intressenterna, men det finns också oenighet kring åtminstone fyra centrala delar

För det andra bör det klargöras hur existerande aktörer kan införlivas i det ekosystem som ska utvecklas. Många av dessa har redan gjort betydande investeringar i humankapital och nätverk, och det är inte önskvärt att dessa satsningar urholkas av konkurrerande och överlappande verksamhet med mera generös statlig finansiering. Istället är det viktigt att se till att deltagande i eller samarbete med tekniksparksfunktionen ses som en möjlighet att expandera och effektivisera verksamheten. MAXESS industriarena erbjuder redan idag ett digitalt gränssnitt som uppfyller en del av de funktioner som skisseras i Vinnovas förslag, RISE hjälper företag med innovationer och nya tekniska lösningar, och Big Science Sweden bidrar till att svenska företag i större utsträckning lyckas bli leverantörer till storskaliga forskningsinfrastrukturer. En rimlig strategi är att engagera dessa och andra existerande aktörer i den nya tekniksparksfunktionen. De nödvändiga insatserna kommer att variera beroende på utgångsläget: För MAXESS kan utmaningen vara att expandera verksamheten från det regionala till det nationella planet; för RISE handlar det om att ägaren, dvs. staten, tydligt markerar att arbetet med ESS (och de nödvändiga investeringarna i humankapital) bör prioriteras; för Big Science Sweden är det främsta behovet en långsiktig finansieringslösning och organisationsstruktur som skapar bättre förutsättningar att bevara och utveckla dess humankapital och kompetens.

En tredje utmaning är att klarare definiera formerna för näringslivets medverkan. Fokus i förslaget ligger på att stärka existerande och skapa nya instegsmiljöer som hjälper enskilda företag att använda neutron- och röntgenbaserade teknologier för innovationer och produktutveckling. Detta är viktigt, men för att belysa utmaningar och prioriteringar som är gemensamma för stora branscher eller hela näringslivet är det också önskvärt att engagera industrins egna organisationer i tekniksparksfunktionen. De flesta aktörer som nämnts som deltagare i tekniksparksfunktionen är universitet, forskningsinstitut, och statliga
myndigheter. Även om dessa ibland har starka relationer med näringslivet skiljer sig deras bedömningar och preferenser ofta från näringslivets behov och önskemål, till exempel vad gäller tidsperspektiv eller prioriteringen mellan utveckling av ny kunskap och tillämpning av existerande kunskap. Flera branschorganisationer (till exempel Teknikföretagen och Läkemedelsindustriföreningen) bör spela en viktig roll för att föra fram industriens perspektiv i diskussioner om strategiska prioriteringar och utformningen av organisatoriska strukturer. För näringslivet kommer prioriteringarna inte alltid att handla om att utveckla ny kunskap, utan snarare om att använda kunskapen och de tekniska resurserna för att hitta lösningar som redan på kort sikt hjälper till att stärka företagens konkurrenskraft.

Den fjärde och största utmaningen är att Vinnovas utredning inte identifierar någon aktör som bör få huvudansvaret för att realisera teknikparksfunktionen. Eftersom det inte finns någon ansvarig aktör är det heller ingen som ikläer sig ansvaret och tar på sig de risker och kostnader som är förknippade med arbetet att bygga upp funktionen. Utan att förminska de problem och utmaningar som kan förväntas i en process där skilda aktörer konkurrerar om viktiga uppdrag (och medföljande resurstillskott och prestige) är det anmärkningsvärt att så få konkreta steg tagits under de år sedan behovet identifierades. Det vore olyckligt om utvecklingen av de existerande initiativen – som förvisso är partiella och otillräckliga – tillåts saka ner under flera år i väntan på nya utredningar om vem som bör ges huvudansvaret för teknikparksfunktionen. För att skapa goda förutsättningar för att maximera samhällsnyttan från ESS krävs att investeringarna i de existerande aktörerna i ekosystemet kring ESS fortsätter även under den tid som eventuellt behövs för att besluta om den institutionella överbyggnaden.
Tidigare forskning har visat att de investeringar som gjorts i Big Science-anläggningar i Europa bidragit till betydande samhällsekonomiska vinster. Den grundforskning som genomförts vid anläggningarna har resulterat i viktiga landvinningar inom många forskningsfält. Investeringarna har därutöver skapat efterfrågan, sysselsättning, innovationer och nya tekniska lösningar i det omgivande samhället, och därigenom genererat ekonomisk tillväxt och högre välfärd. Sveriges långsiktiga målsättning som värdland för ESS bör vara att denna typ av positiva samhällsekonomiska effekter också ska kunna genereras i Sverige. Det är en rimlig målsättning att Sverige skall utveckla en starkare kunskapsbas och skapa en mer konkurrenskraftig näringsmiljö som ett resultat av investeringarna i ESS.

Vår utvärdering visar att svensk industri gynnats av möjligheterna att leverera till ESS, men vi har inte funnit starka tecken på de konkurrens- och kunskapseffekter som tidigare studier av andra anläggningar kunnat påvisa. Svenska företag har erhållit en avsevärd andel av de kontrakt som ESS upphandlat utöver in-kind avtal; värdet av dessa leveranser är betydligt större än de svenska kontantbidragen. Samtidigt verkar de kvalitativa spillovereffekterna på innovationer och konkurrenskraft vara betydligt mindre än vad som framkommit i tidigare studier och utvärderingar av stora forskningsinfrastrukturer.

Orsaken torde inte vara att svenska företag är mindre kompetenta eller läraktiga än företag i andra europeiska länder, utan på att de uppdrag svenska företag kunnat konkurrera om varit annorlunda. Under den studerade tidsperioden har ESS varit i en uppyggnadsfas där en stor del av verksamheten haft fokus på att bygga den fysiska infrastrukturen. Dessutom har största delen av de instrument och den avancerade tekniska utrustning som beställts levererats i form av in-kind bidrag från forskningsinstitut och konsortier i utlandet och endast i mycket begränsad mån kommit svenska företag tillgodo. Även om bygget av anläggningen varit komplicerat och utmanande har de svenska leverantörernas behov och motiv för att satsa resurser på innovation och utveckling av ny teknik oftaft inte varit stora under uppyggnadsfasen. Detta gäller i synnerhet i jämförelse tidigare studier som ofta inkluderar företag som deltagit i olika typer av innovationsupphandling, dvs. beställningar av instrument och utrustning som bygger på de senaste vetenskapliga landvinningarna och som ännu inte finns på marknaden.

De argument som framförs ovan ger anledning att försiktigt tona ned förväntningarna på samhällsekonomiska effekter av Sveriges investeringar i ESS fram till 2021. De utgör emellertid inte något argument för att de svenska investeringarna skulle varit misslyckade eller att de resurser som satsats inte skulle ha gynnat Sverige och de svenska företag som levererat till anläggningen. På båda dessa punkter har vi funnit positiva effekter. Svensk industri har lyckats
få en stor andel av de leveranskontrakt som ESS ställt ut, och svenska företag rapporterar att leveranserna stärkt företagets rykte och varumärke, haft positiva effekter på medarbetarnas tillfredsställelse, och också bidragit till att utveckla värdefulla nätverk och kontakter. Därutöver har den efterfrågan som skapats av upphyrghanden av ESS skapat inkomster och genererat betydande sysselsättning. Under perioden 2010–2020 uppskattas de sommanlagda investeringarna i ESS ha skapat runt 37 000 årsarbetstillfällen i hela EU, varav knappt 16 000 i Sverige. Detta till trots bör resultaten om måttliga effekter på företagens innovationsförmåga fungera både som en väckarklocka och en varningssignal. För att den långsiktiga utvärderingen av Sveriges världskap för ESS inte ska bli en besvikelse krävs att Stockholm framöver också deltar i de mera avancerade delarna av anläggningens verksamhet.

Det är viktigt att svenska forskare finns med som brukare av anläggningen. För att detta ska kunna ske i stor skala krävs särskilda insatser från svenska universitet och forskningsfinansiärer. För att identifiera vetenskapliga frågeställningar kan besvaras med hjälp av de avancerade instrument som kommer att installeras på ESS i närtid, för att använda dessa instrument, och för att utveckla de detaljerade projektansökningsdokument som krävs för att få tillgång till anläggningen, krävs specialister även utanför ESS. Detta kan kräva att svenska forskare delar sin tid mellan ESS och hemmauniversitetet, eller att ESS (med egen eller annan finansiering) erbjuder särskilda program där dessa färdigheter och kunskaper förmedlas till universiteten.

Av stor betydelse är möjligheterna för kommersiella aktörer att utnyttja anläggningen för tillämpad forskning. Möjligheterna för svenska företag att delta i denna typ av verksamhet begränsas troligen av tillgången till specialister som kan hjälpa till med designen av experiment, förberedelse av prover, tolkning av resultat, och andra nödvändiga steg som inte är möjliga att hantera utan tidigare erfarenhet. Vissa av dessa aktiviteter kommer att kunna hanteras av ESS personal, men ESS kommer inte att kunna erbjuda en integrerad tjänst som omfattar hela kedjan från design av experimenten till tolkning av resultaten. Specialiserade mellanhänder som kan fungera som en brygga mellan de kommersiella användarna och anläggningen kan här spela en viktig roll för att bredda näringslivets tillgång till ESS.

I den nuvarande konstellationen har ESS 15 instrument, som utvecklas och levereras av utländska forskningsinstitut och konsortier. Planen är att ytterligare sju instrument ska tillkomma i nästa fas. Det är av stor vikt att Sverige finns med som en in-kind partner för något eller några av dessa instrument. De största utmaningarna för ett svenskt deltagande är troligen att hitta former för det nödvändiga samarbetet mellan universitet och näringsliv (vilket krävs för att gå koncept till faktiskt produkt) och finansieringen av insatsen. Tidigare studier visar att det är genom denna typ av samarbeten, som omfattar både spetskunsken från forskarvärlden och kompetensen från högteknologiska företag, som ny kunskap och nya produkter med kommersiell potential kan skapas.
Denna typ av insatser kommer inte att påverka slutsatserna av den föreliggande utvärderingen – vår slutsats är att de samhällsekonomiska effekterna är positiva om än relativt måttliga, främst på grund av det begränsade aktionsutrymme som svenska aktörer haft under ESS utvecklingsfas. Det bör dock noteras att de framåtriktade rekommendationerna är motiverade av våra undersökningsresultat och slutsatser. Det finns en potential för att uppnå starkare samhällsekonomiska effekter framöver, men det kräver insatser som bidrar till att svenska forskare och svenskt näringsliv kan delta i ESS på en högre nivå.

I diskussionen om ESS råder påtaglig enighet om att dessa insatser bör sikta till att förstärka befintliga ekosystem av företag, universitet och andra intressenter, däribland en rad organisationer och initiativ som skapats just för detta ändamål. Enigheten kring etablerandet av en så kallad "teknikparksfunktion" syns dock vara begränsad till allmänna målsättningar och abstrakta föreställningar om vilka organisatoriska och institutionella former som är att föredra och hur uppbyggnaden av denna funktion skall implementeras. Enigheten har sin grund i de olika aktörernas skilda intressen, kompetenser och målsättningar, vilket förmodligen bidragit till att inga konkreta beslut ännu fattats, och att förverkligandet av "teknikparksfunktionen" inte ens ansatsvis kan skönjas.

Det är viktigt att betona att storleksordningen av de samhällsekonomiska effekter vi iakttagit inte kan ställas emot de skattningar av de samhälleliga vinster som låg till grund för det ursprungliga beslutet att söka värdskap för ESS och följa finansiella förfältelser. I dessa skattningar och beslut spelade effekterna under uppbyggnadsfasen med rätt en mycket underordnad roll. Det är under den kommande driftfasen som stora potentiella vinster kan realiseras.

Av ännu större betydelse är studiens nationella perspektiv. Det har inom ramen för uppdraget inte varit möjligt att studera de lokala och regionala effekterna av uppbyggnaden av ESS på närområdet och inte heller vad som kan vändas för framtiden. Dessa effekter är och kommer fortsättningsvis att vara mycket betydande och innefatta såväl positiva effekter på inkomster, sysselsättning och infrastruktur som potentiellt negativa effekter i form av olika typer av trängselkostnader (congestion costs). En särskilt intressant och aktuell fråga rör effekterna på elförsörjningen i regionen när anläggningen väl tas i drift. Även
om elförsörjningen analyserats under planeringen av ESS har förutsättningarna på elmaknaden ändrats betydligt under det senaste årtiondet, både på det lokala planet och i ett bredare europeiskt perspektiv. Också dessa frågeställningar borde bli föremål för fortsatta analyser som fängar upp de nya utmaningar och möjligheter som uppkommer som ett resultat av förändringar i omvälden.
11 Referenser

Teknikföretagen (2020). Teknikföretagens synpunkter på Vinnovas rapport ”Uppdrag att föreslå organisation för en nationell teknikparksfunktion i anslutning till forskningsanläggningarna ESS och MAX IV, diarienr N2019/01823/EIN.

Bilaga 1: Intervjuer

Margaretha Andersson, Uppsala universitet
Gareth Aspinall, ESS
Lars Börjesson, ESS
Patrik Carlsson, Big Science Sweden
Jacob Egede Andersen, COWI
Anna Hall, Big Science Sweden
Björn Halleröd, Rådet för forskningens infrastrukturer (RFI), Vetenskapsrådet
Anders Hamsten, Näringsdepartementet
Kent Hedin, ESS
Anders Holmgren, AFRY
Olof Karis, Uppsala universitet
Pia Kinhult, ESS
Tobias Krantz, särskild utredare
Mats Lindroos, ESS
Mirko Menninga, ESS
Kjell Möller, BiSS Advisory Board
Iulian Preda, Crystopt-X AB
Mikaela Rapp, RFI, Vetenskapsrådet
Monica Ringvik, RISE
Mark Robinson, ESS
Håkan Rosqvist, ESS
Per Smidfelt, Skanska
Anna Hultin Stigenberg, f.d. RISE
Emil K. Svensson, SWECO
Viktor Öwall, Lunds universitet